DOI QR코드

DOI QR Code

The Association of Intra-Annual Cambial Activities of Pinus koraiensis and Chamaecyparis pisifera planted in Mt. Worak with Climatic Factors

월악산에 식재된 잣나무와 화백나무의 형성층 활동과 기후인자와의 관계

  • Seo, Jeong-Wook (Department of Wood & Paper Science, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Choi, En-Bi (Department of Wood & Paper Science, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Ju, Jeong-Deok (Department of Forest Science, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Shin, Chang-Seop (Department of Forest Science, College of Agriculture, Life and Environment Science, Chungbuk National University)
  • 서정욱 (충북대학교, 농업생명환경대학, 목재.종이과학과) ;
  • 최은비 (충북대학교, 농업생명환경대학, 목재.종이과학과) ;
  • 주정덕 (충북대학교, 농업생명환경대학, 산림학과) ;
  • 신창섭 (충북대학교, 농업생명환경대학, 산림학과)
  • Received : 2016.11.09
  • Accepted : 2016.12.09
  • Published : 2017.01.25

Abstract

This study was fulfilled to verify the durations of cambial activity and analyze the associations of degree days and precipitation with the initiation of cambial activity and intra-annual wood formation for Pinus koraiensis and Chamaecyparis pisifera planted at Mt. Worak, respectively, by monitoring of their intra-annual cambial activities. And more, the reason was also analyzed why the DBH of Chamaecyparis pisifera known as planted in the same year could be classified as two groups (CPL: ${\phi}30cm$, CPS: ${\phi}15cm$). The intra-annual cambial activity was monitored using mini-cores (${\phi}2mm$) and they were collected in 2-week interval between April and October. However, between April and May and between middle September and October expected as the initiation and cessation of the cambial activity, respectively, it was fulfilled in 1-week interval. The average number of tree rings for PK (30) was less than CPS (37) and CPL (38), whereas the average ring width of PK (4.12 mm) was wider than CPS (1.84 mm) and CPL (3.97 mm). In the comparison of ring widths between CPL and CPS, CPL was 2.13 mm wider than CPS, however, excepting CPS 1 (0.83 mm), the average ring widths of CPS 2 (2.42 mm) and CPS 3 (2.73 mm) in the last 3 years were close to the average of CPL (2.71 mm). The initiation of cambial activity for PK was between 1 and 21 April, which was 1 week earlier than CPL and CPS (excepting CPS 1) and the cessation was between 1 and 22 September. The longest growing season therefore was 157.3 days (${\pm}3.3$) and it was longer than CPL ($145.7{\pm}6.6days$) and CPS ($148.0{\pm}15.1days$). In CP groups there were wide variations for the cessation of cambial activity and also there were the meaningful linear relationship between the growing seasons and the ring widths (r = 0.69, p < 0.064). The cambial activity in PK was initiated when degree days were between 99 and 134 and in CPS (excepting PCS 1) and CPL between 134 and 200. Excepting CPS 3, the false ring was observed in all samples collected on 21 July when drought stress was high due to low precipitation from June to the beginning of July.

본 연구는 월악산에 식재된 잣나무와 화백나무의 형성층 활동을 모니터링 하여, 1) 수종에 따른 형성층 활동 기간을 확인하고, 2) 적산온도가 형성층 활동 개시에 미치는 영향과 3) 생육기간 중 강수량이 연륜생장에 미치는 영향을 분석하기 위하여 수행되었다. 또한, 식재연도가 동일하지만 직경생장이 다른 두 그룹(DBH 평균 30 cm (CPL)와 15 cm(CPS))의 화백나무 생장패턴도 함께 조사하였다. 형성층 활동 모니터링을 위해 미니코어를 활용하였으며, 시료채취는 2015년 4월부터 10월까지 2주 간격으로 실시되었다. 형성층 활동 개시와 종료가 기대되는 4-5월과 9월 중순-10월은 일주일 간격으로 실시하였다. 연륜분석 결과 잣나무의 평균 연륜 수는 30개로 CPS와 CPL보다 7 (CPS) 또는 8 (CPL)개 적었다. 반면, 잣나무의 평균 연륜폭은 4.12 mm로 CPL (3.97 mm)과 CPS (1.84 mm)보다 넓은 것으로 확인되었다. 화백나무 상호비교에서는 CPL의 평균 연륜폭이 CPS보다 2.13 mm 넓은 것으로 확인되었으나, 최근 3년간 평균 연륜폭을 비교한 결과 CPS1 (0.83 mm)를 제외한 CPS2 (2.42 mm)와 CPS3 (2.73 mm)은 CPL (2.71 mm) 그룹과 유사하였다. PK의 형성층 활동 개시는 4월 13일과 21일 사이로 CPS1를 제외한 화백나무보다 일주일 정도 빨랐으며, 종료는 9월 1일과 22일 사이로 형성층 활동 최대기간이 157.3 (${\pm}3.3$)일이었으며, CPS ($145.7{\pm}6.6$일)와 CPL ($148.0{\pm}15.1$일)보다 길었다. 화백나무의 경우 형성층 활동 종료 시기에 차이가 많았으며, 형성층 활동기간과 연륜폭 상호간 상관분석에서는 유의수준에 근접한 결과(r = 0.69, p < 0.064)를 보였다. 잣나무의 형성층 활동을 유도하는 적산온도는 99와 134 사이였으며, CPS1 (274)을 제외한 화백나무는 134와 200 사이었다. CPS3을 제외한 모든 수목은 7월 21일에 채취한 시료에서 위연륜(false ring)이 관찰되었으며, 그 원인이 여름철 강수량 부족인 것으로 판단되었다.

Keywords

References

  1. Choe, M.-S. 1999. Chamaecyparis pisifera. Landscaping tree 49(3/4): 21-22.
  2. Cleland, E.E., Chuine, I., Menzel, A., Mooney, H.A., Schwartz, M.D. 2007. Shifting plant phenology in response to global change. TRENDS in Ecology and Evoluation 22(7): 357-364. https://doi.org/10.1016/j.tree.2007.04.003
  3. College of Agriculture, Life and Environment Science. 2003. The 3rd Forest Management Plan. Chunbuk National University, Forestry Inventory 6, 6-1.
  4. Deslauriers, A., Rossi, S., Anfodillo, T. 2007. Dendrometer and intra-annual tree growth: what kind of information can be inferred?. Dendrochronologia 25(2): 113-124. https://doi.org/10.1016/j.dendro.2007.05.003
  5. Eilmann, B., Zweifel, R., Buchmann, N., Fonti, P., Rigling, A. 2009. Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Tree Physiology 29(8): 1011-1020. https://doi.org/10.1093/treephys/tpp035
  6. Eilmann, B., Zweifel. R., Buchmann, N., Pannatier E.G., Rigling, A. 2011. Drought alters timing, quantity, and quality of wood formation in Scots pine. Journal of Experimental Botany 62(8): 2763-2771. https://doi.org/10.1093/jxb/erq443
  7. Gricar, J., Zupancic, M., Cufar, K., Koch, G., Schmitt, U., Oven, P. 2006. Effects of local heating and cooling on cambial activity and cell differentiation in the stem of norway spruce (Picea abies). Annals of Botany 97(6): 943-951. https://doi.org/10.1093/aob/mcl050
  8. Huang, J.-G., Deslauriers, A., Rossi, S. 2014. Xylem formation can be modeled statistically as a function of primary growth and acmbium activity. New Phytologist 203(3): 831-841. https://doi.org/10.1111/nph.12859
  9. Ko, S.Y., Sung, J.H., Chun, J.H., Lee, Y.G., Shin, M.Y. 2014. Predicting the changes of yearly productive area distribution for Pinus densiflora in Korea based on climate change scenarios. Korean Journal of Agricultural and Forest Meteorology 16(1): 72-82. https://doi.org/10.5532/KJAFM.2014.16.1.72
  10. Kong, W.-S., 2004. Species composition and distribution of native korean conifers. Journal of the Korean Geographical Society 39(4): 528-543.
  11. Kwon, S.M., Kim, N.H. 2005. Annual ring formation of major wood species growing in Chuncheon, Korea(I) - the period of cambium activity. Journal of the Korean Wood Science & Technology 33(4): 1-8.
  12. Lee, S.-H., Bae, C.-H., Park, J.-M., Jin, H.-M., Park, J.-A. 2016. Studies on biological phenology of the main forest area in Gyeonggi region. Proc. Korean Soc. Environ. Ecology. Con. 26(1): 21-22.
  13. Menzel, A., Sparks, T.H., Estrella, N., Koch E., Aasa A., Ahas, R, Alm-Kübler, K., Bissolli P., Braslavska, O., Briede, A., Chmielewski, F.M., Crepinsek, Z., Curnel, Y., Dahl, A., Defila, C., Donnelly, A., Filella, Y., Jatczak, K., Mage, F., Mestre, A., Nordli, O., Penuelas, J., Pirinen, P., Remisova, V., Scheifinger, H., Striz, M., Susnik, A., van Vliet, A.J.H., Wielgolaski, F.-E., Zach, S., Zust, A. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12(10): 1969-1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x
  14. Oberhuber, W., Gruber, A. 2010. Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees 24: 887-898. https://doi.org/10.1007/s00468-010-0458-1
  15. Park, S.-Y., Eom, C.-D., Seo, J.-W. 2015. Seasonal change of cambium activity of pine trees at different growth sites. Journal of the Korean Wood Science & Technology 43(3): 411-420. https://doi.org/10.5658/WOOD.2015.43.4.411
  16. Park, W.-K., Seo, J.-W. 2000. Long-term monitoring of climatic and soil factors, and tree growths in Worak Mountain using phytogram system. The Korean Journal of Quaternay Research 14(2): 101-107.
  17. Rossi, S., Deslauriers, A., Anfodillo, T. 2006. Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the alpine timberline. IAWA Journal 27(4): 383-394. https://doi.org/10.1163/22941932-90000161
  18. Rossi, S., Deslauriers, A., Anfodillo, T., Carrer M. 2008. Age-dependent xylogenesis in timberline conifers. New Phytologist 177: 199-208.
  19. Rossi, S., Deslauriers, A., Gricar, J., Seo, J.-W., Rathgeber, C.B.K., Anfodillo, T., Morin, H., Levanic, T., Oven, P., Jalkanen, R. 2008. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography 17: 696-707. https://doi.org/10.1111/j.1466-8238.2008.00417.x
  20. Sarvas, R. 1972. Investigations on the annual cycle of development of forest trees. Active period. Commun. Inst. For. Fenn. 76(3): 1-110.
  21. Schmitt, U., Koch, G., Eckstein, D., Seo, J.-W., Prislan, P., Gricar, J., Cufar, K., Stobbe, H., Jalkanen, R. 2016. The vascular cambium of trees and its involvement in defining xylem anatomy. Seconday Xylem Biology: Origins, Functions, and Applications (eds. Y.S. Kim, Funada, R., Singh, A.P.) 3-24.
  22. Seo, J.-W., Eckstein, D., Schmitt, U. 2007. The pinning method: from pinning to data preparation. Dendrochronologia 25: 79-86. https://doi.org/10.1016/j.dendro.2007.04.001
  23. Seo, J.-W., Eckstein, D., Jalkanen, R., Rickebusch, S., Schmitt, U. 2008. Estimating the onset of cambial activity in Scots pine in northern Finland by means of the heat-sum approach. Tree Physiology 28: 105-112. https://doi.org/10.1093/treephys/28.1.105
  24. Shim, K.M., Kim, Y.S., Jeong, M.P., Choi, I.T. 2015. Characteristics of climate change in sowing period of winter crops. Journal of Climate Change Research 6(3): 203-208. https://doi.org/10.15531/ksccr.2015.6.3.203
  25. Thibeault-Martel, M., Krause, C., Morin, H., Rossi, S. 2008. Cambial activity and intra-annual xylem formation in roots and stems of Abies balsamea and Picea mariana. Annals of Botany 102(5): 667-674. https://doi.org/10.1093/aob/mcn146