DOI QR코드

DOI QR Code

Implementation of Fog Computing Architecture for IoT Service on Hybrid Broadcast Environment

하이브리드 방송 환경에서의 IoT 서비스 지원을 위한 Fog Computing Architecture 구현

  • Kum, Seung Woo (Smart Media Research Center, Korea Electronics Technology Institute) ;
  • Lim, Tae-Beom (Smart Media Research Center, Korea Electronics Technology Institute) ;
  • Park, Jong-Il (Department of Computer and Software, Hanyang University)
  • 금승우 (전자부품연구원 스마트미디어연구센터) ;
  • 임태범 (전자부품연구원 스마트미디어연구센터) ;
  • 박종일 (한양대학교 컴퓨터소프트웨어학부)
  • Received : 2017.11.17
  • Accepted : 2017.01.10
  • Published : 2017.01.30

Abstract

Recently, IoT applications are being deployed in Smart TVs, and these IoT applications are using smart TVs as application platforms rather than broadcast platforms. With the advent of Hybrid broadcast technologies, now it becomes available to develop IoT applications which are coupled to the broadcast information. However, the existing IoT services are not suitable for Hybrid broadcast application since they are built on cloud and require various protocol implementations. In this paper, a Fog Computing-based architecture for hybrid broadcast application is proposed. Instead of accessing IoT services from hybrid broadcast app directly, the proposed architecture places Fog Applet Server between them and distribute loads of hybrid broadcast app to the Fog Applet. The proposed architecture is implemented as a service to control IoT device with hybrid application.

기존의 방송 단말에서 제공되는 IoT 서비스는 방송과 연계되지 않은 독립형 서비스의 형태로 제공되고 있었으나 최근 하이브리드 방송 관련 기술의 확산으로 방송과 IoT가 유기적으로 연계된 다양한 서비스로의 발전이 기대되고 있다. 하지만 현행 IoT 서비스는 다양한 프로토콜이 혼재된 클라우드 형태로 구성되어 임베디드 어플리케이션인 하이브리드 방송 단말에서의 접근에 많은 제약을 가지고 있다. 이러한 문제를 해결하기 위해, 본 논문에서는 Fog Computing의 개념을 어플리케이션으로 확장한 하이브리드 방송용 Fog Applet 아키텍쳐를 제안한다. Fog Applet 아키텍쳐는 클라우드 기반 IoT 서비스와 방송 단말 어플리케이션 사이에 Fog Applet을 위치시킴으로써 임베디드 어플리케이션의 서비스 접근 요구를 감소시키고 다양한 클라우드 기반 IoT 서비스와 유연한 구성을 제공하는 목적을 가진다. 제안된 아키텍쳐는 하이브리드 방송 기반의 서비스 환경에 대한 구현을 통하여 다종 IoT 서비스의 연동을 지원하는 하이브리드 어플리케이션의 구현을 통하여 그 기능을 검증한다.

Keywords

References

  1. A. Al-Fuqaha, M. Guizani, and M. Mohammadi, "Internet of things: A survey on enabling technologies, protocols, and applications," IEEE Commun. Surv. Tutorials, vol. 17, no. 4, pp. 2347-2376, 2015. https://doi.org/10.1109/COMST.2015.2444095
  2. Z. B. Babovic, J. Protic and V. Milutinovic, "Web Performance Evaluation for Internet of Things Applications," in IEEE Access, vol. 4, pp. 6974-6992, 2016. https://doi.org/10.1109/ACCESS.2016.2615181
  3. IFTTT, http://www.ifttt.com.
  4. Muzzley, http://www.muzzley.com
  5. Yunjin Choi, Sanggil Lee, and Byunghee Jung, "Implementation of Advertising System for N-Screen Live Streaming Service," Journal of Broadcast Engineering, vol. 19, no. 6, 2014.
  6. Dong-Woo Kim, Young-Ju Lee, "The Impact of User Behavior, Contents, Function, Cost on Use Satisfaction," Journal of Broadcast Engineering, vol. 18, no. 5, 2013.
  7. Samsung Smart Home Cloud API, http://developer.samsung.com/smart-home.
  8. LG WebOS Developer Site, https://developer.lge.com/webOSTV/.
  9. DGMIT, http://www.dgmit.com.
  10. MinKyu Park, Yong Han Kim, "MMT-based Broadcasting Services Combined with MPEG-DASH," Journal of Broadcast Engineering, vol. 20, no. 2, 2015.
  11. M. Milosevic, B. Rodaljevic, and M. Pejovic, "One implementation of companion screen functionality for hybrid broadcast broadband television," Telecommunications forum TELFOR 2015, pp. 783-786, 2015.
  12. L. Bassbouss, G. Gusslu and S. Steglich, "Towards a Wake-up and Synchronization Mechanism for Multiscreen Applications using iBeacon.," SIGMAP, pp. 67-72, 2014.
  13. A. V. Dastjerdi and R. Buyya, "Fog Computing: Helping the Internet of Things Realize Its Potential," Computer, vol. 49, No. 8, 112-116, Aug., 2016. https://doi.org/10.1109/MC.2016.245
  14. M. W. Condry and C. B. Nelson, "Using Smart Edge IoT Devices for Safer, Rapid Response With Industry IoT Control Operations," in Proceedings of the IEEE, vol. 104, no. 5, pp. 938-946, May 2016. https://doi.org/10.1109/JPROC.2015.2513672
  15. Y. Cao, S. Chen, P. Hou, and D. Brown, "FAST: A fog computing assisted distributed analytics system to monitor fall for stroke mitigation," Networking,Architecture and Storage (NAS), 2015 IEEE International Conference on, pp. 2-11, 2015.
  16. V. Stantchev, A. Barnawi, and S. Ghulam, "Smart Items, Fog and Cloud Computing as Enablers of Servitization in Healthcare," Sensors & Transducers, 2015.
  17. J. Li, J. Jin, D. Yuan, M. Palaniswami, and K. Moessner, "EHOPES: Data-centered Fog platform for smart living," presented at the Telecommunication Networks and Applications Conference (ITNAC), 2015 International, pp. 308-313, 2015.
  18. R. B. Baghli, E. Najm, and B. Traverson, "Towards a Multi-Leveled Architecture for the Internet of Things," Enterprise Distributed Object Computing, pp. 1-6, 2016.
  19. Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde. From the internet of things to the web of things: Resource-oriented architecture and best practices. In Architecting the Internet of Things, pages 97-129. 2011.
  20. Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey. Computer networks, vol. 54, No.15, pages 2787-2805, 2010. https://doi.org/10.1016/j.comnet.2010.05.010
  21. D. Linthicum, "Responsive Data Architecture for the Internet of Things," Computer, vol. 49, no. 10, pp. 72-75. https://doi.org/10.1109/MC.2016.302
  22. H. Anumala and S. M. Busetty, "Distributed Device Health Platform Using Internet of Things devices," 2015 IEEE International Conference on Data Science and Data Intensive Systems, Sydney, NSW, 2015, pp. 525-531.
  23. HbbTV Assocation, "HbbTV 2.0 Specification,", 2015.