DOI QR코드

DOI QR Code

물의 포화풀비등에서 다발효과를 평가하기 위한 실험식 개발

Development of an Empirical Correlation to Evaluate the Bundle Effect in Saturated Pool Boiling of Water

  • 투고 : 2016.06.24
  • 심사 : 2016.10.30
  • 발행 : 2017.01.01

초록

대기압 하에서 포화 상태를 유지하는 물의 내부에 잠긴 탠덤 튜브에 적용하기 위한 실험적 상관식을 새롭게 개발하였다. 상관식은 다발효과를 계산하기 위한 것으로 실험에서 측정한 값과 최소자승법을 사용하여 결정하였다. 상관식의 적절함을 평가하기 위해 통계분석을 수행하였다. 상관식은 실험값을 ${\pm}8%$ 범위 내에서 잘 예측함을 확인하였다. 상관식의 적용 범위는 피치=28.5~114mm, 방위각=$0^{\circ}{\sim}90^{\circ}$, 경사각=$0^{\circ}{\sim}90^{\circ}$, 상부 및 하부 튜브 열유속=$0{\sim}120kW/m^2$이다.

A new empirical correlation was developed for application to the tandem tubes for saturated water at atmospheric pressure. The correlation was obtained by using experimental data and the least square method to calculate the bundle effect. A statistical analysis was performed to identify the suitability of the correlation. The correlation predicted the experimental data within ${\pm}8%$. The applicable ranges of the correlation correspond to a tube pitch of 28.5~114 mm, an elevation angle of $0^{\circ}{\sim}90^{\circ}$, an inclination angle of $0^{\circ}{\sim}90^{\circ}$, and heat fluxes of $0{\sim}120kW/m^2$ of the lower and upper tubes.

키워드

참고문헌

  1. Schaffrath, A., Hicken, E. F., Jaegers, H. and Prasser, H.M., 1999, "Operation Conditions of the Emergency Condenser of the SWR 1000," Nuclear Engineering and Design, Vol. 188, pp. 303-318. https://doi.org/10.1016/S0029-5493(99)00044-8
  2. Kang, M. G., 2014, "Measurement of the Average Pool Boiling Heat Transfer Coefficient on a Near Horizontal Tube," Transactions of the KSME B, Vol. 38, pp. 81-88. https://doi.org/10.3795/KSME-B.2014.38.1.081
  3. Aprin, L., Mercier, P. and Tadrist, L., 2011, "Local Heat Transfer Analysis for Boiling of Hydrocarbons in Complex Geometries: A New Approach for Heat Transfer Prediction in Staggered Tube Bundle," Int. J. Heat Mass Transfer, Vol. 54, pp. 4203-4219. https://doi.org/10.1016/j.ijheatmasstransfer.2011.05.023
  4. Swain, A. and Das, M. K., 2014, "A Review on Saturated Boiling of Liquids on Tube Bundles," Heat Mass Transfer, Vol. 50, pp. 617-637. https://doi.org/10.1007/s00231-013-1257-1
  5. Liu, Z.-H. and Qiu, Y.-H., 2006, "Boiling Heat Transfer Enhancement of Water on Tubes in Compact In-Line Bundles," Heat Mass Transfer, Vol. 42, pp. 248-254. https://doi.org/10.1007/s00231-005-0015-4
  6. Ribatski, G., Jabardo, J. and Silva, E., 2008, "Modeling and Experimental Study of Nucleate Boiling on a Vertical Array of Horizontal Plain Tubes," Applied Thermal and Fluid Science, Vol. 32, pp. 1530-1537. https://doi.org/10.1016/j.expthermflusci.2008.04.008
  7. Gupta, A., 2005, "Enhancement of Boiling Heat Transfer in a $5{\times}3$ Tube Bundle," Int. J. Heat Mass Transfer, Vol. 48, pp. 3763-3772. https://doi.org/10.1016/j.ijheatmasstransfer.2005.03.023
  8. Gupta, A., Saini, J. S. and Varma, H. K., 1995, "Boiling Heat Transfer in Small Horizontal Tube Bundles at Low Cross-flow Velocities," Int. J. Heat Mass Transfer, Vol. 38, pp. 599-605. https://doi.org/10.1016/0017-9310(94)00282-Z
  9. Hahne, E. and Muller, J., 1983, "Boiling on a Finned Tube and a Finned Tube Bundle," Int. J. Heat Mass Transfer, Vol. 26, pp. 849-859. https://doi.org/10.1016/S0017-9310(83)80109-4
  10. Hahne, E., Chen, Q.-R. and Windisch, R., 1991, "Pool Boiling Heat Transfer on Finned Tubes -an Experimental and Theoretical Study," Int. J. Heat Mass Transfer, Vol. 34, pp. 2071-2079. https://doi.org/10.1016/0017-9310(91)90218-4
  11. Nelson, P. J. and Burnside, B. M., 1985, "Boiling the Immiscible Water/n-nonane System from a Tube Bundle," Int. J. Heat Mass Transfer, Vol. 28, pp. 1257-1267. https://doi.org/10.1016/0017-9310(85)90157-7
  12. Hsieh, S.-S., Huang, G.-Z. and Tsai, H.-H., 2003, "Nucleate Pool Boiling Characteristics from Coated Tube Bundles in Saturated R-134a," Int. J. Heat Mass Transfer, Vol. 46, pp. 1223-1239. https://doi.org/10.1016/S0017-9310(02)00380-0
  13. Liu, Z.-H. and Qiu, Y.-H., 2002, "Enhanced Boiling Heat Transfer in Restricted Spaces of a Compact Tube Bundle with Enhanced Tubes," Applied Thermal Engineering, Vol. 22, pp. 1931-1941. https://doi.org/10.1016/S1359-4311(02)00111-4
  14. Cornwell, K. and Schuller, R. B., 1982, "A Study of Boiling Outside a Tube Bundle Using High Speed Photography," Int. J. Heat Mass Transfer, Vol. 25, pp. 683-690. https://doi.org/10.1016/0017-9310(82)90173-9
  15. Memory, S. B., Akcasayar, N., Eraydin, H. and Marto, P. J., 1995, "Nucleate Pool Boiling of R-114 and R-114-oil Mixtures from Smooth and Enhanced Surfaces-II. Tube Bundles," Int. J. Heat Mass Transfer, Vol. 38, pp. 1363-1376. https://doi.org/10.1016/0017-9310(94)00264-V
  16. Roser, R., Thonon, B. and Mercier, P., 1999, "Experimental Investigation on Boiling of n-pentane Across a Horizontal Tube Bundle: Two-phase Flow and Heat Transfer Characteristics," International Journal of Refrigeration, Vol. 22 , pp. 536-547. https://doi.org/10.1016/S0140-7007(99)00021-3
  17. Malayeri, M. R., Muller-Steinhagen, H. and Bartlett, T. H., 2005, "Fouling of Tube Bundles under Pool Boiling Conditions," Chemical Engineering Science, Vol. 60, pp. 1503-1513. https://doi.org/10.1016/j.ces.2004.10.017
  18. Memory, S. B., Chilman, S. V. and Marto, P. J., 1994, "Nucleate Pool Boiling of a TURBO-B Bundle in R-113," ASME J. Heat Transfer, Vol. 116, pp. 670-678. https://doi.org/10.1115/1.2910921
  19. Kang, M. G., 2015, "Pool Boiling Heat Transfer on Tandem Tubes in Vertical Alignment," Int. J. Heat Mass Transfer, Vol. 87, pp. 138-144. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.015
  20. Kumar, S., Mohanty, B. and Gupta, S. C., 2002, "Boiling Heat Transfer from a Vertical Row of Horizontal Tubes," Int. J. Heat Mass Transfer, Vol. 45, pp. 3857-3864. https://doi.org/10.1016/S0017-9310(01)00360-X
  21. Kumar, S., Jain, A., Gupta, S. C. and Mohanty, B., 2000, "Boiling Heat Transfer from a Vertical Row of Horizontal Reentrant Cavity Tubes," Proceedings of the ASME-ZSITS International Thermal Science Seminar, June 11-14, Bled, Slovenia.
  22. Ustinov, A., Ustinov, V. and Mitrovic, J., 2011, "Pool Boiling Heat Transfer of Tandem Tubes Provided with the Novel Microstructure," Int. J. Heat Fluid Flow, Vol. 32, pp. 777-784. https://doi.org/10.1016/j.ijheatfluidflow.2011.04.001
  23. Kang, M. G., 2014, "Empirical Correlation to Predict Pool Boiling Heat Transfer on Tandem Tubes," International Review of Mechanical Engineering, Vol. 8, pp. 948-951.
  24. Kang, M. G., 2014, "Pool Boiling Heat Transfer on the Inside Surface of an Inclined Tube," JP Journal of Heat and Mass Transfer, Vol. 10, pp. 47-61.
  25. J. P. Holman, 1997, Heat Transfer, 8th ed., McGraw-Hill.
  26. Coleman, H. W. and Steele, W. G., 1999, Experimentation and Uncertainty Analysis for Engineers, 2nd Ed., John Wiley & Sons.
  27. Cornwell, K. and Houston, S. D., 1994, "Nucleate Pool Boiling on Horizontal Tubes: a Convection-based Correlation," Int. J. Heat Mass Transfer, Vol. 37, pp. 303-309.