DOI QR코드

DOI QR Code

The injection petrol control system about CMAC neural networks

CMAC 신경회로망을 이용한 가솔린 분사 제어 시스템에 관한 연구

  • Han, Ya-Jun (Department of Electronic Engineering, Gyeongnam National University of Science and Technology) ;
  • Tack, Han-Ho (Department of Electronic Engineering, Gyeongnam National University of Science and Technology)
  • Received : 2016.11.10
  • Accepted : 2017.01.04
  • Published : 2017.02.28

Abstract

The paper discussed the air-to-fuel ratio control of automotive fuel-injection systems using the cerebellar model articulation controller(CMAC) neural network. Because of the internal combustion engines and fuel-injection's dynamics is extremely nonlinear, it leads to the discontinuous of the fuel-injection and the traditional method of control based on table look up has the question of control accuracy low. The advantages about CMAC neural network are distributed storage information, parallel processing information, self-organizing and self-educated function. The unique structure of CMAC neural network and the processing method lets it have extensive application. In addition, by analyzing the output characteristics of oxygen sensor, calculating the rate of fuel-injection to maintain the air-to-fuel ratio. The CMAC may easily compensate for time delay. Experimental results proved that the way is more good than traditional for petrol control and the CMAC fuel-injection controller can keep ideal mixing ratio (A/F) for engine at any working conditions. The performance of power and economy is evidently improved.

본 논문에서는 산소 센서를 이용하여 CMAC 신경회로망 학습제어에 의한 차량의 연료분사 제어방법에 대해 논한다. 기본 차량 내연기관과 연료 분사 제어시스템의 동역학적인 비선형성으로 인하여 불연속적인 연로를 분사한다. 정밀 연료 분사량 제어에 어려움을 발생시키기 때문에 엔진성능은 저하된다. 본 연구에서는 CMAC 신경회로망을 이용한 연료 분사시스템을 제안한다. CMAC 신경회로망은 매우 넓은 범위의 함수로부터 비선형 관계를 학습 할 수 있고, 학습이 빠르며, 수렴 특성을 가지고 있다. 그리고 산소 센서의 출력특성을 파악하여 연료분사 속도를 계산해서 설정된 공연비 값을 유지시켜준다. 게다가 기존 가솔린 엔진의 구조변경이 없이 어떤 상황에서도 공연비를 정밀하게 제어할 수 있으며, 배기가스 배출량을 절감시킬 수 있다. 시뮬레이션을 통해 일반적인 차량의 제어 방법과 비교 분석하였고, 제안된 방법이 차량의 연비 향상과 친환경 성능 등에 더 효과적임을 확인하였다.

Keywords

References

  1. B. D. In, S. K Park, and K. Y. Lee "A study on characteristics of combustion according to injection strategy in DISI engine," International Journal of Automotive Technology, vol. 20, no. 1, pp. 68-76, Jan. 2012.
  2. J. J. Yoo, T. J. Chung, and J. S. Choi, "Learning control based on CMAC neural networks," Electronics and Telecommunications Trends, vol. 8, no. 3, pp. 11-20, Sep. 1993.
  3. S. Kwon "A Cooperative Fuzzy and CMAC Control for Cartpole System," International Journal of Fuzzy Logic and Intelligent Systems, vol. 16, no. 3, pp 349-356, Jun. 2006.
  4. J. S. Albus, "Data storage in the cerebellar model articulation controller(CMAC)," Journal of Dynamic Systems, Measurement and Control, vol. 97, no. 3, pp. 228-233, Sep. 1975. https://doi.org/10.1115/1.3426923
  5. J. S. Albus, "New approach to manipulator control: the cerebellar model articulation controller," Journal of Dynamic Systems, Measurement and Control, vol. 97, no. 3, pp. 220-227, Sep.1975. https://doi.org/10.1115/1.3426922
  6. A. L. Bucazk, R E. Uhrig "Hydrid Fuzzy-Genetic Technique for Multisensor Fusion," Information Sciences, vol. 93, no. 3, pp.120-126, Sep.1996.
  7. D. G. Copp, K. J, Burnham, and F. P, Locker "Model comparison for feedforward Air/Fuel Ratio control," UKACC international conference on Control'98, Wales: vol. 1, pp. 670-675, Sep. 1998.
  8. I. K. Jenog, C Choi, J. H, Shin, and J. J. Lee "A modified genetic algorithm for neurocontrollers," IEEE International Conference on Evolutionary Computation , Perth: vol. 1, pp. 306, Nov. 1995.

Cited by

  1. 무인자동차 궤적 추적 제어 시스템에 관한 연구 vol.21, pp.10, 2017, https://doi.org/10.6109/jkiice.2017.21.10.1879