Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.2
/
pp.395-400
/
2017
The paper discussed the air-to-fuel ratio control of automotive fuel-injection systems using the cerebellar model articulation controller(CMAC) neural network. Because of the internal combustion engines and fuel-injection's dynamics is extremely nonlinear, it leads to the discontinuous of the fuel-injection and the traditional method of control based on table look up has the question of control accuracy low. The advantages about CMAC neural network are distributed storage information, parallel processing information, self-organizing and self-educated function. The unique structure of CMAC neural network and the processing method lets it have extensive application. In addition, by analyzing the output characteristics of oxygen sensor, calculating the rate of fuel-injection to maintain the air-to-fuel ratio. The CMAC may easily compensate for time delay. Experimental results proved that the way is more good than traditional for petrol control and the CMAC fuel-injection controller can keep ideal mixing ratio (A/F) for engine at any working conditions. The performance of power and economy is evidently improved.
CMAC 신경회로망은 다차원 비선형 함수를 학습을 통하여 발생되는 많고 복잡한 데이터들을 퍼셉트론과 같이 집합시켜 메모리를 구성하고 처리하는 분야이다. 일반적으로 학습알고리즘은 소수의 반복으로써 수렴한다. 본고에서는 CMAC의 메카니즘 및 CMAC의 특성을 기술하고, CMAC의 학습가능성을 예시하였다. CMAC의 학습성능을 시험하기 위해서 3관절 로봇의 squatting 문제에 적용하였다.
Kim, Jong-Man;Kim, Sung-Joong;Kwon, Oh-Sin;Kim, Hyong-Suk
Proceedings of the KIEE Conference
/
1993.07a
/
pp.492-494
/
1993
CMAC (Cerebeller Model Articulation Controller) is kind of Neural Networks that imitate the human cerebellum. For storage and retrieval of learned data, the input of CMAC is used as a key to determine the memory location. he learned information is distributively stored in physical memory. The learning of CMAC is very fast and converged well, therefore, it effects the application of Pattern Recognition. Through the our experiment of Pattern Recognition, we will prove that CMAC is very suitable for On-line real time processing and incremental learning of Neural Networks.
Neural networks and fuzzy systems have attracted the attention of many researehers recently. In general, neural networks are used to obtain information about systems from input/output observation and learning procedure. On the other hand, fuzzy systems use fuzzy rules to identify or control systems. In this paper we present a generalized FCMAC(Fuzzified Cerebellar Model Articulation Controller) networks, by integrating fuzzy systems with the CMAC(Cerebellar Model Articulation Controller) networks. We propose a direct adaptive controller design based on FCMAC(fuzzified CMAC) networks. Simulation results reveal that the proposed adaptive controller is practically feasible in nonlinear plant control.
In this paper, we proposed an indirect learning and direct adaptive control schemes using neural networks, i.e., composite adaptive neural control, for a class of continuous nonlinear systems. With the indirect learning method, the neural network learns the nonlinear basis of the system inverse dynamics by a modified backpropagation learning rule. The basis spans the local vector space of inverse dynamics with the direct adaptation method when the indirect learning result is within a prescribed error tolerance, as such this method is closely related to the adaptive control methods. Also hash addressing technique, similar to the CMAC functional architecture, is introduced for partitioning network hidden nodes according to the system states, so global neuro control properties can be organized by the local ones. For uniform stability, the sliding mode control is introduced when the neural network has not sufficiently learned the system dynamics. With proper assumptions on the controlled system, global stability and tracking error convergence proof can be given. The performance of the proposed control scheme is demonstrated with the simulation results of a nonlinear system.
인간 소뇌의 구조와 기능을 간략하게 수학적으로 모델링하여 입력에 따른 시스템의 적정 출력을 학습에 의한 적응 제어 방식으로 추출해 내는 소뇌모델 대수제어기(CMAC : Cerebellar Model Arithmetic Controller)가 제안되었다. 본 논문에서는 연구개발된 기존 신경회로망과의 비교 분석에 의거하여, 소뇌모델 대수제어기 대신 네트의 특성에 따라 소뇌모델 선형조합 신경망(CMLAN : Cerebellum Model Linear Associator Network)이라 하였다. 소뇌모델 선형조합 신경망은 시스템의 제어 함수치를 결정하는 데 있어, 기존의 제어방식이 시스템의 모델링을 기초로 하여 알고리즘에 의한 수치해석적 또는 분석적 기법으로 모델 해를 산출하는 것과 달리, 학습을 통하여 저장되는 분산기억 소자들의 함수치를 선형적으로 조합함으로써 시스템의 입출력을 결정한다. 분산기억 소자로의 함수치 산정 및 저장은 소뇌모델 선형조합 신경망이 갖는 고유의 구조적 상태공간 매핑(State Space Mapping)과 델타규칙(Delta Rule)에 의거한 시스템의 입출력 상태함수의 학습으로써 수행된다. 본 논문을 통하여 소뇌모델 선형조합신경망의 구조적 특성, 학습 성질과 상태공간 설정 및 시스템의 수렴성을 규명하였다. 또한 기존의 최대 편차수정 학습 알고리즘이 갖는 비능률성 및 적용 제한성을 극복한 효율적 학습 알고리즘들을 제시하였다. 언급한 신경망의 특성 및 제안된 학습 알고리즘들의 능률성을 다양한 학습이득(Learning Gain)하에서 비선형 함수를 컴퓨터로 모의 시험하여 예시하였다.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.2
/
pp.28-37
/
1999
Differentially Responsible Adaptive Critic Learning technique is proposed for learning the control technique with multiple control inputs as in robot system using reinforcement learning. The reinforcement learning is a self-learning technique which learns the control skill based on the critic information Learning is a after a long series of control actions. The Adaptive Critic Learning (ACL) is the representative reinforcement learning structure. The ACL maximizes the learning performance using the two learning modules called the action and the critic modules which exploit the external critic value obtained seldomly. Drawback of the ACL is the fact that application of the ACL is limited to the single input system. In the proposed Differentially Responsible Action Dependant Adaptive Critic learning structure, the critic function is constructed as a function of control input elements. The responsibility of the individual control action element is computed based on the partial derivative of the critic function in terms of each control action element. The proposed learning structure has been constructed with the CMAC neural networks and some simulations have been done upon the two dimensional Cart-Role system and robot squatting problem. The simulation results are included.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.