DOI QR코드

DOI QR Code

SEXTIC MOMENT PROBLEMS ON 3 PARALLEL LINES

  • Yoo, Seonguk (Department of Mathematics Sungkyunkwan University)
  • Received : 2016.02.03
  • Published : 2017.01.31

Abstract

Sextic moment problems with an infinite algebraic variety are still widely open. We study the problem with a single cubic column relation associated to 3 parallel lines in which the variety is infinite. It turns out that this specific column relation has a strong connection with moment problems that have a symmetric algebraic variety. We present more concrete solutions to some sextic moment problems with a symmetric variety.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. R. Curto and L. Fialkow, Solution of the truncated complex moment problem with flat data, Memoirs Amer. Math. Soc. no. 568, Amer. Math. Soc., Providence, 1996.
  2. R. Curto and L. Fialkow, Flat extensions of positive moment matrices: relations in analytic or conjugate terms, Nonselfadjoint operator algebras, operator theory, and related topics, 59-82, Oper. Theory Adv. Appl., 104, Birkhauser, Basel, 1998.
  3. R. Curto and L. Fialkow, Solution of the singular quartic moment problem, J. Operator Theory 48 (2002), no. 2, 315-354.
  4. R. Curto and L. Fialkow, Recursively determined representing measures for bivariate truncated moment sequences, J. Operator Theory 70 (2013), no. 2, 401-436. https://doi.org/10.7900/jot.2011sep06.1943
  5. R. Curto, L. Fialkow, and H. M. Moller, The extremal truncated moment problem, Integral Equations Operator Theory 60 (2008), no. 2, 177-200. https://doi.org/10.1007/s00020-008-1557-x
  6. R. Curto and S. Yoo, Cubic column relations in truncated moment problems, J. Funct. Anal. 266 (2014), no. 3, 1611-1626. https://doi.org/10.1016/j.jfa.2013.11.024
  7. R. Curto and S. Yoo, Non-extremal sextic moment problems, J. Funct. Anal. 269 (2015), no. 3, 758-780. https://doi.org/10.1016/j.jfa.2015.04.014
  8. R. Curto and S. Yoo, Concrete solution to the nonsingular quartic binary moment problem, Proc. Amer. Math. Soc. 144 (2016), no. 1, 249-258.
  9. L. Fialkow, Solution of the truncated moment problem with variety y = $x^3$, Trans. Amer. Math. Soc. 363 (2011), no. 6, 3133-3165. https://doi.org/10.1090/S0002-9947-2011-05262-1
  10. L. Fialkow, The truncated moment problem on parallel lines, The varied landscape of operator theory, 109-126, Theta Ser. Adv. Math., Theta, Bucharest, 2014.
  11. L. Fialkow, Limits of positive flat bivariate moment matrices, Trans. Amer. Math. Soc. 367 (2015), no. 4, 2665-2702.
  12. L. Fialkow and J. Nie, Positivity of Riesz functionals and solutions of quadratic and quartic moment problems, J. Funct. Anal. 258 (2010), 328-356. https://doi.org/10.1016/j.jfa.2009.09.015
  13. R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1990.
  14. D. P. Kimsey, Matrix-Valued Moment Problems, ProQuest LLC, Ann Arbor, Ph.D. Thesis, Drexel University, 2011.
  15. D. P. Kimsey, The cubic complex moment problem, Integral Equations Operator Theory 80 (2014), no. 3, 353-378. https://doi.org/10.1007/s00020-014-2183-4
  16. D. P. Kimsey and H. J. Woerdeman, The truncated matrix-valued K-moment problem on ${\mathbb{R}}^d$, ${\mathbb{C}}^d$, and ${\mathbb{T}}^d$, Trans. Am. Math. Soc. 365 (2013), no. 10, 5393-5430. https://doi.org/10.1090/S0002-9947-2013-05812-6
  17. J. L. Smul'jan, An operator Hellinger integral, Mat. Sb. 91 (1959), no. 1, 381-430.
  18. J. Stochel, Solving the truncated moment problem solves the full moment problem, Glasg. Math. J. 43 (2001), no. 3, 335-341. https://doi.org/10.1017/S0017089501030130
  19. S. Yoo, Extremal sextic truncated moment problems, Thesis (Ph.D.) The University of Iowa, 2010.
  20. Wolfram Research, Inc., Mathematica, Version 10.3, Champaign, IL, 2015.

Cited by

  1. Sextic Moment Problems with a Reducible Cubic Column Relation vol.88, pp.1, 2017, https://doi.org/10.1007/s00020-017-2362-1