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SEXTIC MOMENT PROBLEMS ON 3 PARALLEL LINES

Seonguk Yoo

Abstract. Sextic moment problems with an infinite algebraic variety
are still widely open. We study the problem with a single cubic column
relation associated to 3 parallel lines in which the variety is infinite. It
turns out that this specific column relation has a strong connection with
moment problems that have a symmetric algebraic variety. We present
more concrete solutions to some sextic moment problems with a symmet-
ric variety.

1. Introduction

Let β ≡ β(m)={β00, β10, β01, . . . , βm,0, βm−1,1, . . . , β1,m−1, β0,m} with β00 >

0 denote a real 2-dimensional multisequence of order m. The truncated real

moment problem (TRMP) entails finding necessary and sufficient conditions
for the existence of a positive Borel measure µ supported in the real plane R2

such that

βij =

∫

xiyj dµ (i, j ∈ Z+, 0 ≤ i+ j ≤ m).

We call µ a representing measure for β; if a moment sequence has such a
measure, then we say the problem is soluble and the necessary and sufficient
conditions are said to be a solution.

There is also a complex version of the problem defined as follows: given
a collection of complex numbers γ ≡ γ(m) : γ00, γ01, γ10, . . . , γ0,m, γ1,m−1, . . .,
γm−1,1, γm,0, with γ00 > 0 and γji = γ̄ij , the truncated complex moment prob-

lem (TCMP) concerns under what conditions there is a positive Borel measure
µ supported in the complex plane C such that γij =

∫

z̄izj dµ (0 ≤ i+j ≤ m).
It is well-known that TRMP and TCMP are equivalent for an even m [3], and
hence all the techniques developed for a solution to TCMP are valid for TRMP
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as well. Both problems are simply referred to as the truncated moment problem

(TMP).
When m = 2n, we define the moment matrix M(n) ≡ M(n)(β(2n)) of β as

M(n)(β(2n)) := (βi+j)i, j∈Z2

+
:|i|, |j|≤n.

R. Curto and L. Fialkow have provided elegant results for various moment prob-
lems in a series of papers. Some of their work was established with matrix pos-
itivity and an extension of M(n); new techniques were developed through the
functional calculus of the columns in CM(n), the column space of M(n). For the
application of functional calculus, we label the columns in M(n) with the fol-
lowing degree lexicographical order: 1, X, Y,X2, XY, Y 2, . . . , Xn, . . . , Y n. We
note that each block with the moments of the same order in M(n) is Hankel
and that M(n) is symmetric.

When m = 2n+ 1, partial solutions can be seen in [14] and [16] as well as a
solution to the truncated matrix moment problem; in particular, a solution to
the cubic complex moment problem (when n = 1) was given in [15]. However,
the problem is still often for n ≥ 2.

Including important applications of TMP in various areas, we should remark
that a solution of the full moment problem can be obtained from a complete
solution of TCMP, via a weak-∗ convergence argument, as shown by J. Stochel
[18]; thus it seems essential to find a solution of TMP for all orders to cover
the full moment problem.

We know moment problems with a single cubic column relation or with an
invertible moment matrices are much more difficult to solve since these cases
naturally satisfy all the necessary conditions and require some other properties;
for m = 6, some specific cases are resolved as in [9, 10] but most cases remain
open. In this note we focus on sextic moment problems with a single cubic
column relation of 3 parallel lines, that is, rank M(n) = 9. We will also
see this specific relations is deeply connected to moment problems that have
a symmetric algebraic variety (see the definition in (1)). We later find more
concrete solution for the sextic moment problems with a symmetric variety.
Beyond these arguments, the technique used for the main results is again valid
for sextic moment problems with reducible conic column relations which are
much larger class and the topic will be seen in the forthcoming paper.

2. Preliminaries

2.1. Necessary conditions

Let µ be a representing measure of β. Then we first compute that

0 ≤

∫

p(x, y)2 dµ =
∑

i,j,k,l

aijakl

∫

xi+lyj+k dµ =
∑

i,j,k,l

aijaklβi+lβj+k,

which is equivalent to M(n) ≥ 0, that is, the most basic necessary condition
for the existence of a measure is the positive semidefiniteness (or positivity) of
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M(n). Next define an assignment from Pn, the set of all polynomials of degree
≤ n, to CM(n); given a polynomial p(x, y) ≡

∑

ij aijx
iyj , we take p(X,Y ) :=

∑

ij aijX
iY j , which is the so-called functional calculus. We also let Z(p) denote

the zero set of p and define the algebraic variety of β by

(1) V ≡ V(β) ≡ V(M(n)) :=
⋂

p(X,Y )=0, deg p≤n Z(p).

If p̂ denotes the column vector of coefficients of p, then we know p(X,Y ) =
M(n)p̂, that is, p(X,Y ) = 0 if and only if p̂ ∈ kerM(n). It is also known
that the existence of a measure requires the properties, supp µ ⊆ V(β) and
r := rank M(n) ≤ card supp µ ≤ v := card V , which is the variety condition

[1].
We need another assignment to discuss additional necessary conditions. The

Riesz functional is a map from P , the set of all polynomials, to R defined by

Λ
(

∑

ij aijx
iyj

)

=
∑

ij aijβij . If p is any polynomial of degree at most 2n such

that p|V ≡ 0, then the Riesz functional Λ must satisfy Λ(p) =
∫

p dµ = 0, which
is referred to as consistency of the moment sequence. If r = v, then M(n) is
said to be extremal ; the consistency is a key solution to the extremal problems
[5]. Also note that consistency cannot be replaced by the weaker condition that
M(n) is recursively generated, that is,

(RG)
if p(X,Y ) = 0, then (p q)(X,Y ) = 0

for each polynomial q with deg(p q) ≤ n.

For solutions of the quadratic and quartic moment problems, positive semi-
definiteness, (RG), and the variety condition were sufficient (see [1], [3], [12]).
Beyond this order, the situation gets more complicated; many instances show
a solution must include numerical conditions involving moments (see [6], [7],
and [9]).

2.2. Flat extension

The Flat Extension Theorem [1] says that if M(n) admits a rank-preserving
positive extension M(n + 1), then β has a rank M(n)-atomic measure. The
extension M(n+ 1) is called a flat extension. This result is probably the most
general solution to TMP to date even though the construction of an extension
is not feasible for many cases when n ≥ 3. We briefly summarize how to build
a flat extension. Observe that each rectangular block with the same order
moments of M(n) is Hankel, and that an extension M(n+1) can be written as

M(n+1) =
(

M(n) B

B∗ C

)

for some matrices B and C. To make sure a prospective

moment matrix M(n+ 1) is positive, we use the following classical result:
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Theorem 2.1 (Smul’jan’s Theorem [17]). Let A,B,C be matrices of complex

numbers, with A and C square matrices. Then

(

A B

B∗ C

)

≥ 0 ⇐⇒







A ≥ 0
B = AW (for some W )

C ≥ W ∗AW.

Moreover, rank
(

A B
B∗ C

)

= rank A ⇐⇒ C = W ∗AW.

Remark 2.2. If the equality involving the rank occurs in Theorem 2.1, we write
(

A B
B∗ C

)

≡
(

A AW
W∗A W∗AW

)

, which is a flat extension of A. Construction of a
flat extension seems to be easy in principle but satisfying another requirement,
Hankelicity of C-block, is an extremely nontrivial process. In other words, it
is quite difficult to maintain positivity and the moment matrix structure of
M(n+ 1) at the same time.

We now discuss a method for finding the explicit formula of a representing
measure. An extended version of the Flat Extension Theorem says if M(n)
admits a positive extension M(n+k) for some k ∈ Z+ that has a flat extension
M(n + k + 1), then β has an rank M(n + k)-atomic measure µ. Let τ :=
rank M(n+k). According to this flat extension theorem, the algebraic variety
V(M(n+k)) consists of exactly τ points, and hence we may write V(M(n+k)) =
{(x1, y1), . . . , (xτ , yτ )}. Now construct the Vandermonde matrix V as

(2) V =







1 x1 y1 x2
1 x1y1 y21 · · · xn

1 · · · yn1
...

...
...

...
...

...
. . .

...
. . .

...
1 xτ yτ x2

τ xτyτ y2τ · · · xn
τ · · · ynτ






.

Suppose B := {t1, . . . , tτ} is the basis for the column space of M(n+ k). If VB

is the submatrix of V with columns selected from B, then the densities can be
evaluated by solving the matrix equation:

(3) V T
B

(

ρ1 ρ2 · · · ρτ
)T

=
(

Λ(t1) Λ(t2) · · · Λ(tτ )
)T

.

Thus, we have µ =
∑τ

k=1 ρkδ(xk,yk), where δ denotes the point mass.

2.3. Auxiliary results

We collect old results to prove the main theorems. The rank-one decompo-
sition method was adopted to TMP for the first time in [7] and the following
theorem was essential to establish the method; it shows that the relationship
between the eigenvalues of the matrix and its perturbation by a rank-one ma-
trix. Let λk(A) denote the k-th greatest eigenvalue of a matrix A.

Theorem 2.3 ([13]). Let A be an n × n Hermitian matrix and let z ∈ Cn be

a given vector. If the eigenvalues of A and A± zz∗ are arranged in increasing

order as above, we have for k = 1, 2, . . . , n− 2,

(i) λk(A± zz∗) ≤ λk+1(A) ≤ λk+2(A± zz∗),
(ii) λk(A) ≤ λk+1(A± zz∗) ≤ λk+2(A).
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There is a more general version of the preceding result.

Theorem 2.4 ([13]). Let A,B ∈ Mn be Hermitian and suppose that B has

rank at most r. Then

(i) λk(A+B) ≤ λk+r(A) ≤ λk+2r(A+B) for k = 1, 2, . . . , n− 2r;
(ii) λk(A) ≤ λk+r(A+B) ≤ λk+2r(A) for k = 1, 2, . . . , n− 2r;
(iii) If A = UΛU∗ with U =

(

u1 u2 · · · un

)

∈ Mn unitary and

Λ = diag(λ1, . . . , λn) with λ1 ≤ λ2 ≤ · · · ≤ λn, and if

B = λnunu
∗
n + λn−1un−1u

∗
n−1 + · · ·+ λn−r+1un−r+1u

∗
n−r+1,

then λmax(A−B) = λn−r(A).

The proposition below is very useful to predict column relations in M(n) for
a given algebraic variety and will be applied frequently.

Proposition 2.5 ([1, Proposition 3.1]). Suppose µ is a representing measure

for β. For p ∈ Pn,

supp µ ⊆ Z(p) ⇐⇒ p(X,Y ) = 0.

The following theorem says that once we have a linear column relation,
positivity and (RG) solve the problem.

Theorem 2.6 ([2, cf. Theorem 2.1]). Assume that M(n) ≥ 0 satisfies (RG)
and that M(n) has a linear column relation. Then M(n) admits a flat extension

M(n+ 1), so M(n) has a rank M(n)-atomic representing measure.

To drive results about symmetric variety in Section 4, we need to understand
a special class of TMP. Assume the two columns Xn and Y n in M(n) are
linearly dependent. Then Xn+1 and Y n+1 are necessarily to be fixed to satisfy
the property (RG), and hence all the new moments of the extension M(n+ 1)
are determined by the structure of the moment matrix. This rigidity enables
to solve this type of problems. We begin with the formal definition:

Definition 2.7. M(n) is said to be recursively determined, if M(n) has only
column dependence relations of the form

Xn = p(X,Y ) (p ∈ Pn−1);(4)

Y m = q(X,Y ) (q ∈ Pm, q has no ym term, m ≤ n).(5)

Theorem 2.8 ([4, Theorem 2.3.]). If M(n) is positive, with column relations

generated entirely by (4) and (5) via recursiveness and linearity, then M(n)
admits a unique (RG) extension M(n+ 1).

Corollary 2.9 ([4, Corollary 2.4.]). If M(n) satisfies the hypotheses of The-

orem 2.8 and n = m − 2, then M(n) admits a flat moment matrix extension

M(n+ 1) and β admits a rank M(n)-atomic representing measure.

L. Fialkow recently provided a solution to M(n) whose algebraic variety
consists of two parallel lines. This result gives an inspiration to consider main
results in this note.
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Table 1. Classification of sextic moment problems in terms
of r and v

rank M(3) card V What to Check Solution Presented in

7 7 numerical conditions Section 6.3 [19]
7 8 consistency Theorem 3.2 in [7]
7 9 consistency Theorem 3.2 in [7]
7 ∞ consistency Theorem 3.2 in [7]
8 8 numerical conditions Section 6.4 [19]
8 9 consistency Algorithm 4.2 in [7]
8 ∞ consistency Algorithm 5.5 in [7]
9 ∞ [9, 10] (particular cases)
10 ∞ unknown

Theorem 2.10 ([10, Theorem 1.2.]). Let n ≥ 2. Suppose deg p(x, y) = 2 and

Z(p) consists of 2 parallel lines. Then β ≡ β(2n) has a representing measure

supported in Z(p) if and only if M(n) is positive semidefinite, recursively gen-

erated, satisfies the variety condition, and p(X,Y ) = 0 in the column space of

M(n).

Reading [10] thoroughly, we readily know this case admits a rank M(n)-
atomic representing measure.

3. Sextic moment problems on 3 parallel lines

A complete solution to quartic moment problems is found; we may focus
on the cases where the submatrix M(2) in M(3) is nonsingular, that is, M(2)
needs to be positive definite. We collect all the possible sextic moment problems
in Table 1 and list information about each case. As Table 1 shows, M(3)
with an infinite variety remains unsolved. Building an extension of the cases
requires too many new moments (parameters), even a computer algebra could
not execute the calculation. Some instances further show that solutions to
problems of order ≥ 6 involve numerical conditions with given moments whose
origin is vague. This might be the reason why sometimes the best solutions are
just algorithms.

Recall that truncated moment problems are equivalent under a degree-one
transformation [3], which allows us to consider a new moment matrix M(3)
with a simpler column relation. Let us begin with noting that if a set of points
is on 3 parallel lines, then we can use a shift and a dilation to make 2 of 3 lines

as y = 0 and y = 1. Consequently, if M̂(3) has a column relation of 3 parallel
lines, we could transform the given column relation to one that corresponds to
y(y − 1)(y − k) = 0 for some k ∈ R. If k = 0 or 1, then V(M(3)) is contained
in y = 0 and y = 1, which fact forces for M(3) to have a conic column relation
Y 2 = Y ; we can exclude these possibilities. Thus, it is always possible to find
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a matrix of degree-one transformation J such that M(3) = JT M̂(3)J , where
M(3) has a column relation Y 3 = −kY + (1 + k)Y 2 for some k ∈ R (k 6= 0, 1).
From now on, we focus onM(3) with the column relation Y 3 = −kY+(1+k)Y 2.

When M(3) has another cubic column relation, we may solve the problem
using the results in Table 1. Hence, our focus is on M(3) with a single depen-
dence relation Y 3 = −kY +(1+k)Y 2. While this specific cubic column relation
is investigated, it is found that this column relation has a strong connection
to the sextic moment problems with a “symmetric” variety. We will improve
previous results in Table 1 for M(3) whose algebraic variety is symmetric in
Section 4.

Before the main results are introduced, we need the following argument:
Assume that M ≡ M(3) has a representing measure µ. Then we may write
µ = µ0+µ1+µk, where supp µ0 ⊆ {(x, y) : y = 0}, supp µ1 ⊆ {(x, y) : y = 1},
and supp µk ⊆ {(x, y) : y = k}. We can also write M = M [µ0] + M [µ1] +
M [µk], where each summand is the moment matrix generated by the associated
measure. Since M −M [µ0] = M [µ1] +M [µk], Proposition 2.5 says M −M [µ0]
must have the column relation Y 2 = −k1+ (1 + k)Y due to the fact that the
support of a representing measure for M −M [µ0] is contained the pair of lines
y2 = (1 + k)y − k. The moment matrix M − M [µ0] needs to be recursively
generated so that the columns XY 2 and Y 3 must be linearly dependent in its
column space, which tells us that rank (M −M [µ0]) ≤ 7.

We next get a crucial observation that plays a key role for our results: Since
∫

xiyjdµ0 = 0 for 0 ≤ i ≤ 6 and 1 ≤ j ≤ 6, the moment matrix M [µ0] must be
written in the form of:

(6) M ♮ :=

































a1 a2 0 a3 0 0 a4 0 0 0
a2 a3 0 a4 0 0 a5 0 0 0
0 0 0 0 0 0 0 0 0 0
a3 a4 0 a5 0 0 a6 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
a4 a5 0 a6 0 0 a7 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

































for some ai ∈ R, 1 ≤ i ≤ 7. For the existence of a measure, we may determine
a1, . . . , a5 concretely; indeed, the column relation Y 2 = (1 + k)Y − k1 must
appear in

(7) ˜M := M −M ♮,



306 SEONGUK YOO

and hence we have the linear system of equations:






























k(−a1 + β00 − β01)− β01 + β02 = 0

k(−a2 + β10 − β11)− β11 + β12 = 0

k(−a3 + β20 − β21)− β21 + β22 = 0

k(−a4 + β30 − β31)− β31 + β32 = 0

k(−a5 + β40 − β41)− β41 + β42 = 0

(8)

Because k 6= 0, the system has an obvious solution. The moment matrices

M ♮ and ˜M are consequently dependent on only two variables a6 and a7. Note

that all the entries in M ♮(2) and ˜M(2) are completely determined. The nested
determinants of the two matrices will be an important discriminants for the
main results; let A{i1,...,ik} denote the compression of an m ×m matrix A to
the columns and the rows indexed by {i1, . . . , ik} and let us define:

∆♮
1 := a1, ∆♮

2 := detM ♮

{1,2}, ∆♮
3 := detM ♮

{1,2,4}, and ∆♮
4 := detM ♮

{1,2,4,7};

˜∆1 := det ˜M{1,2,3,4,5,8}, ˜∆2 := det ˜M{1,2,3,4,5,7}, and ˜∆3 := det ˜M{1,2,3,4,5,7,8}.

Note also from the multilinearity of the determinant that ∆♮
4,

˜∆2, and ˜∆3

are quadratic polynomials of a6 and a7 and that the only second-degree term
with nonzero coefficients in these three determinants is a26; thus, they are fairly

easy to handle. Obviously, if ∆♮
1 < 0, ∆♮

2 < 0, ∆♮
3 < 0, or ˜∆1 < 0, then we

conclude that M does not admit a representing measure. From now on, we

may assume M ♮(2) ≥ 0 and ˜M(2) ≥ 0.
Through this section, we assume M ≡ M(3) is positive semidefinite with

the only column relation Y 3 = −kY + (1 + k)Y 2. We also define M ♮ and ˜M

as in (6) and (7).

Remark 3.1. It is known that the maximal cardinality of the support of a
representing for β(2n) is the same as dimP2n. For n = 3, it would be 28.
However, we have a much better bound for this case. Note that since M ♮ has
a linear column relation, it has a minimal representing measure which is at
most 4-atomic. The fact that the two parallel lines contain the support of a

measure for ˜M implies a minimal measure would be 7-atomic. Thus a minimal
representing measure for M may have 11 atoms at most.

We now observe that since rank M ♮ ≤ 4 and rank M ≤ rank M ♮+rank ˜M ,

we know rank ˜M ≥ 5. Besides, ˜M must have at least 3 column relations, which

shows 5 ≤ rank ˜M ≤ 7.
Since ˜M is a moment matrix with a column relation of two parallel lines, we

can apply Theorem 2.10 to check the existence of a measure for ˜M . Because
M ♮ has a linear column relation, Theorem 2.6 is to be used; for both, we just
need to check positivity, the variety condition, and (RG).

Before going further, we have to notice that ∆♮
2 and ˜∆1 are free of a6 and

a7; then, according to the values of ∆♮
i ’s, we may have the following subcases:
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First, note that if ∆♮
1 = 0, then M ♮ needs to be the zero matrix but this is

not feasible. Second, if ∆♮
1 > 0 and ∆♮

2 = 0, then all of X , X2, and X3 in CM♮

must be linearly dependent, equivalently, rank M ♮ = 1, so that a representing
measure for M ♮ is 1-atomic; however, if we say (α, 0) is the atom, then M must
have another column relation associated to (x − α)(y − 1)(y − k) = 0, which
cannot happen under the condition rank M = 9.

Thus, in the rest of the section, we may naturally assume ∆♮
1 > 0 and

∆♮
2 > 0. Now, in terms of the values of ∆♮

3 and ˜∆1, we may have the following
4 cases:

Case I. ∆♮
3 = 0 and ˜∆1 = 0;

Case II. ∆♮
3 = 0 and ˜∆1 > 0;

Case III. ∆♮
3 > 0 and ˜∆1 = 0;

Case IV. ∆♮
3 > 0 and ˜∆1 > 0.

However, Case I cannot happen; for, if ∆♮
3 = 0, then since X2 ∈ CM♮ is

linearly dependent and M ♮ must be (RG), we know rank M ♮ = 2. On the

other hand, if ˜∆1 = 0, then by the Extension Principle in [1], X2Y ∈ CM♮ is

linearly dependent, so rank ˜M ≤ 6. Nonetheless the inequality, 9 = rank M ≤

rank M ♮ + rank ˜M ≤ 2 + 6, shows this is not a feasible case.
We are now ready to have our main results. The next covers Case II:

Theorem 3.2. Suppose M(3) is positive semidefinite with the only cubic col-

umn relation of 3 parallel lines, Y 3 = −kY + (1 + k)Y 2. Suppose ∆♮
3 = 0 and

˜∆1 > 0. If {1, X} in CM♮ forms a basis, then a6 and a7 are fixed. With such

a6 and a7, if ˜M ≥ 0, then M(3) admits a 9-atomic representing measure.

Proof. If ∆♮
3 = 0 (recall ∆♮

3 is free of a6 and a7), then X2, and X3 in CM♮

must be both linearly dependent in order to implement the (RG)-condition

in M ♮. By the Extension Principle, the row reduction of M
♮

{1,2,4} helps to

identify the column relation X2 = α11 + α2X for some α1, α2 ∈ R; then
through the required column relation X3 = α1X + α2X

2 in M ♮. An easy
calculation shows that there are always such a6 and a7. We next check whether
˜M ≥ 0 or not. If so, ˜M has a 7-atomic measure because rank ˜M = 7 (for,

9 = rank M ≤ rank M ♮+rank ˜M ≤ 2+rank ˜M and ˜M has 3 column relations,

that is, rank ˜M ≤ 7). Since M ♮ has a 2-atomic measure, we conclude that M
admits a minimal 9-atomic measure. �

Example 3.3. Consider

M ≡ M(3) :=

































10 0 12 94 0 20 0 174 0 36
0 94 0 0 174 0 1798 0 338 0
12 0 20 174 0 36 0 338 0 68
94 0 174 1798 0 338 0 3558 0 666
0 174 0 0 338 0 3558 0 666 0
20 0 36 338 0 68 0 666 0 132
0 1798 0 0 3558 0 39574 0 7082 0
174 0 338 3558 0 666 0 7082 0 1322
0 338 0 0 666 0 7082 0 1322 0
36 0 68 666 0 132 0 1322 0 260
































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with the unique column relation Y 3 = −2Y + 3Y 2 (k = 2). Solve (8) and we
have

a1 = 2, a2 = 0, a3 = 2, a4 = 0, a5 = 2

and we compute ∆♮
3 = 0 and ˜∆1 = 9564480. We then write M = M ♮+˜M as in

(7); for M ♮ ≥ 0, M ♮ must have the column relation X2 = 1 which was obtained
from row reduction of M ♮

{1,2,4}. This relation sets a6 = 0 and a7 = 2; thus

now M ♮ ≥ 0 and rank M ♮ = 2. With the fixed a6 and a7, it is straightforward

to see ˜M ≥ 0 and rank ˜M = 7. Therefore, M admits 9-atomic representing
measure.

The next theorem is for Case III; before we run into the result, we should

exclude the case where ∆♮
3 > 0, ∆♮

4 = 0, ˜∆1 = 0, and ˜∆2 = 0. For, if so, ˜M is

flat with rank ˜M = 5 and ˜M admits a unique 5-atomic measure. Since M ♮ has
3-atomic measure, M has a minimal 8-atomic measure; but, it is absurd since
the cardinality of a measure sets a bound for the rank of the moment matrix.

Notice that the condition ˜∆1 = 0 makes the last column in ˜M{1,2,3,4,5,8} to

be linearly dependent, and so we may identify the column relation as X2Y =
α11+ α2X + α3Y + α4X

2 + α5XY . The Extension Principle tells us that

(9) X2Y = α11+ α2X + α3Y + α4X
2 + α5XY

(denote the corresponding polynomial of this relation as p(x, y)) must hold in
C
M̃
, which enables to fix a6. Assume a6 is determined in such a manner in

Theorem 3.4, so M ♮ and ˜M only depend on a7.

Theorem 3.4. Suppose M(3) is positive semidefinite with only a cubic column

relation of 3 parallel lines, Y 3 = −kY + (1 + k)Y 2. Assume that ∆♮
3 > 0 and

˜∆1 = 0.

(i) If there are a6 and a7 such that ˜∆2 = 0 and ∆♮
4 > 0, then M(3) admits

a 9-atomic representing measure.

(ii) If there are a6 and a7 such that ˜∆2 > 0, ∆♮
4 = 0, and

|Z(p)∩Z ((y − 1)(y − k)) | ≥ 6 (p as in (9)), then M(3) admits a 9-atomic

representing measure.

(iii) If there are a6 and a7 such that ˜∆2 > 0, ∆♮
4 > 0, and

|Z(p) ∩ Z ((y − 1)(y − k)) | ≥ 6 (p as in (9)), then M(3) admits a 10-

atomic representing measure.

Proof. (i) If ˜∆2 = 0, then a7 is fixed and ˜M is flat with rank ˜M = 5. Thus, ˜M
has a unique 5-atomic measure. With such a7, if ∆

♮
4 > 0, then M ♮ ≥ 0 and

M ♮ has a 4-atomic representing measure. Thus, M admits a 9-atomic measure.

(ii) Solving ∆♮
4 = 0, a7 is to be fixed and we see that M ♮ with a 3-atomic

measure. With such a7, if ˜M ≥ 0 and ˜M satisfies the variety condition, equiv-

alently, |Z(p) ∩ Z ((y − 1)(y − k)) | ≥ 6, it follows from Theorem 2.10 that ˜M

has a 6-atomic measure; so, M admits a 9-atomic measure.
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(iii) Solve the system of inequalities ∆♮
4 > 0 and ˜∆2 > 0. If there is a

solution, we know M ♮ ≥ 0 and ˜M ≥ 0 simultaneously. M ♮ obviously has a

4-atomic measure. Among such a7, if ˜M satisfies the variety condition, again

equivalently, |Z(p) ∩ Z ((y − 1)(y − k)) | ≥ 6, we conclude that ˜M has a 6-
atomic measure; so, M admits a 10-atomic measure. �

Example 3.5. Consider

M ≡ M(3) :=

































9 0 8 44 0 12 0 74 0 20
0 44 0 0 74 0 548 0 138 0
8 0 12 74 0 20 0 138 0 36
44 0 74 548 0 138 0 1058 0 266
0 74 0 0 138 0 1058 0 266 0
12 0 20 138 0 36 0 266 0 68
0 548 0 0 1058 0 8324 0 2082 0
74 0 138 1058 0 266 0 2082 0 522
0 138 0 0 266 0 2082 0 522 0
20 0 36 266 0 68 0 522 0 132

































with the single cubic column relation Y 3 = −2Y + 3Y 2 (k = 2). Solve (8) and
we have

a1 = 3, a2 = 0, a3 = 2, a4 = 0, a5 = 2

and we compute

∆♮
3 = 4, ∆♮

4 = −2(4 + 3a26 − 2a7),
˜∆1 = 0, ˜∆2 = −512(−738+ 5a26 + 45a7).

We next write M = M ♮ + ˜M as in (7); for ˜M ≥ 0, since ˜M should have
the column relation X3 = −161 + 16Y + X2 (obtained from row reduction

of ˜M{1,2,3,4,5,8}), we take a6 = 0; thus, now ∆♮
4 = −2(4 − 2a7) and ˜∆2 =

−512(−738 + 45a7). It is straightforward to see V(˜M) = {(±4, 2)} ∪ {(x, 1) :
x ∈ R} which is an infinite set, and hence the variety conditions is confirmed.

For both M ♮ ≥ 0 and ˜M ≥ 0, it is necessary ∆♮
4 ≥ 0 and ˜∆2 ≥ 0, that is,

2 ≤ a7 ≤ 82/5. If a7 = 2 (˜∆2 > 0 and ∆♮
4 = 0), then rank M ♮ = 3 and

rank ˜M = 6; thus M has a 9-atomic representing measure; if 2 < a7 < 82/5

(˜∆2 > 0 and ∆♮
4 > 0), then rank M ♮ = 4 and rank ˜M = 6; thus M has a

10-atomic representing measure. Finally, if a7 = 82/5 (˜∆2 = 0 and ∆♮
4 > 0),

then rank M ♮ = 4, rank ˜M = 5, and ˜M satisfies the variety condition; thus
M has a 9-atomic representing measure.

It remains to cover Case IV:

Theorem 3.6. Suppose M(3) is positive semidefinite with only a cubic column

relation of 3 parallel lines, Y 3 = −kY + (1 + k)Y 2. Assume that ∆♮
3 > 0 and

˜∆1 > 0.

(i) If there are a6 and a7 such that ∆♮
4 = 0 (resp. ∆♮

4 > 0), ˜∆2 = 0, and
˜M satisfies the variety condition, then M(3) admits a 9-(resp. 10-)atomic

representing measure.
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(ii) If there are a6 and a7 such that ∆♮
4 = 0 (resp. ∆♮

4 > 0) and ˜∆2 > 0,
then M(3) admits a 10-(resp. 11-)atomic representing measure.

Proof. (i) Observe that if ˜∆2 = 0 for some a6 and a7, then X3 in C
M̃

must

be linearly dependent to get ˜M ≥ 0 because of the Extension Principle. Row

reduction of ˜M{1,2,3,4,5,7} reveals X3 = α11+ α2X + α3Y + α4X
2 + α5XY as

the column relation in the last column for some α1, . . . , α5 ∈ R; then through
the required column relation X3 = α11 + α2X + α3Y + α4X

2 + α5XY must
appear in C

M̃
. Let us denote the corresponding polynomial of the relation

as q(x, y). It is easy to see there are always such a6 and a7. We know that
˜M is naturally positive semidefinite; then we proceed to check if ˜M satisfies
the variety condition, equivalently, check if |Z(q) ∩ Z ((y − 1)(y − k)) | ≥ 6 or

not. When the inequality holds, we end with that ˜M has 6-atomic measure by
Theorem 2.10. Moreover, if the fixed a6 and a7 make ∆♮

4 = 0 (resp. ∆♮
4 > 0),

then rank M ♮ = 3 (resp. rank M ♮ = 4) and M ♮ ≥ 0; thus, M ♮ has a 3-(resp.
4-)atomic representing measure.

(ii) If the system of inequalities ˜∆1 > 0 and ˜∆2 > 0 has some solution of a6
and a7, then ˜M ≥ 0 and rank ˜M = 7; thus, ˜M has a 7-atomic representing

measure. With some a6 and a7 satisfying ˜∆1 > 0 and ˜∆2 > 0, if ∆♮
4 = 0 (resp.

∆♮
4 > 0), then M ♮ ≥ 0 and rank M ♮ = 3 (resp. rank M ♮ = 4); thus, M ♮ has a

3-(resp. 4-)atomic representing measure. Combining the two observations, we
proved the desired result. �

The example below shows how the previous results work:

Example 3.7. Consider

M ≡ M(3) :=

































β00 0 14 94 0 24 0 174 0 44
0 94 0 0 174 0 1798 0 338 0
14 0 24 174 0 44 0 338 0 84
94 0 174 1798 0 338 0 3558 0 666
0 174 0 0 338 0 3558 0 666 0
24 0 44 338 0 84 0 666 0 164
0 1798 0 0 3558 0 39574 0 7082 0

174 0 338 3558 0 666 0 7082 0 1322
0 338 0 0 666 0 7082 0 1322 0
44 0 84 666 0 164 0 1322 0 324

































.

If β00 = 10 or 12, then M(3) ≥ 0 with a single cubic column relation Y 3 =
−2Y + 3Y 2 (k = 2). With β00 = 10, we solve the linear system (8) and obtain

a1 = 1, a2 = 0, a3 = 2, a4 = 0, a5 = 2.

Since ∆♮
3 = −4, the moment matrix M ♮ cannot have a possibility to be posi-

tive, and hence M(3) cannot have a representing measure. On the other hand,
solving (8) with β00 = 12, we get

a1 = 3, a2 = 0, a3 = 2, a4 = 0, a5 = 2

and we compute

∆♮
3 = 4, ∆♮

4 = −2(4 + 3a26 − 2a7),
˜∆1 = 61578720, ˜∆2 = −16(−697608422+ 1025a26 + 436855a7).
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We then write M = M ♮+˜M(β̃) as in (7). To see if ˜M satisfies the conditions in

Theorem 3.6 (i), solve ˜∆2 = 0 and set a7 := (697608422−1025a26)/436855. Next

row reduction of ˜M{1,2,3,4,5,7} brings the column relation X3 = (−23370a61 −

12832882X+28495a6Y −2050a6X
2+15803496XY )/873710, which should ap-

pear in C
M̃
. This fact leads to a6 = 0; thus, M ♮ ≥ 0, ˜M ≥ 0, rank M ♮ =

4, rank ˜M = 6, and ˜M satisfies the variety condition because V(˜M) =
{(

±
√

17/5, 1
)

,
(

±
√

881/41, 2
)

, (0, 1), (0, 2)
}

. Therefore, we know that M

has 10-atomic representing measure.
On the other hand, it is possible to find a6 and a7 such that ∆♮

4 = 0 and
˜∆2 > 0. Indeed, we set a7 = (4+3a26)/2 to have ∆♮

4 = 0. For ˜M ≥ 0, we need

−
18

5

√

9472526

149855
≤ a6 ≤

18

5

√

9472526

149855
.

For concreteness, if we take a6 = 0, then we can calculate µ0 = δ(−1,0)+δ(0,0)+

δ(1,0); for ˜M ≡ ˜M(β̃), we build a flat extension by keeping recursiveness and,

in particular, with new moments β̃70 = 0 and β̃61 = 395142/5. A measure for
˜M is

∑7
k=1 ρiδ(xk,yk), where

ρ1 = 18/17, (x1, y1) = (0, 1) ,

ρ2 = 25/17, (x2, y2) =
(

−
√

17/5, 1
)

,

ρ3 = 25/17, (x3, y3) =
(

√

17/5, 1
)

,

ρ4 = 5/4 +
√

7627246245/33927876176, (x4, y4) =

(

−
√

(131995 +
√
10602461305)/10430, 2

)

,

ρ5 = 5/4 +
√

7627246245/33927876176, (x5, y5) =

(

√

(131995+
√
10602461305)/10430, 2

)

,

ρ6 = 5/4−
√

7627246245/33927876176, (x6, y6) =

(

−
√

(131995−
√
10602461305)/10430, 2

)

,

ρ7 = 5/4−
√

7627246245/33927876176, (x7, y7) =

(

√

(131995−
√
10602461305)/10430, 2

)

.

We just now obtained a minimal 10-atomic representing measure for M(3).

Finally, the system of inequalities ∆♮
3 > 0, ∆♮

4 > 0, ˜∆1 > 0, and ˜∆2 > 0
has the following solution:

2 < a7 ≤ 110148914
69085 ,−

√
2a7−4
√
3

< a6 <
√
2a7−4
√
3

or

110148914
69085 < a7 < 327362

205 ,−
√
697608422−436855a7

5
√
41

< a6 <
√
697608422−436855a7

5
√
41

.

If we select a6 and a7 from this solution, then both M ♮ and ˜M are positive,

rank M ♮ = 4, and rank ˜M = 7. Thus, M may have an 11-atomic measure as
well.

4. A symmetric variety

We now would like to discuss sextic moment problems with a symmetric
variety that is on 3 parallel lines. If an algebraic variety is symmetric with
respect to a line, then there are bundles of lines passing through the symmetric
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pairs of points. By Proposition 2.5, the existence of a representing measure for a
singular M(3) imposes a column relation whose associated polynomial contains
all the points in the algebraic variety, and hence we may assume the symmetric
points lie on a cubic planar curve; such a concrete cubic is a combination
of 3 parallel lines. The most general cases with a symmetric variety whose
generators are of degree ≤ 3 is a product of a line and a conic; this topic might
be more difficult and may be handled in the future.

Recall again that truncated moment problems are equivalent under a degree-
one transformation, which allows us to take M(3) with a simpler column rela-
tion. Let us begin with noting that if a set of points in the plane is symmetric
about a line, then using a linear transformation we may rearrange the points
being symmetric to the y-axis. A proper rotation enables us to have the axis of
symmetry of V as x = 0. Thus we may think that all points in V are contained
in 3 horizontal lines. We then use a shift and a dilation to make 2 of lines as
y = 0 and y = 1. We finally made all the points in V lie on y(y− 1)(y− k) = 0
for some k ∈ R. As discussed earlier, k needs to be different from 0 or 1. From
now on, we may focus on a positive semidefinite M(3) with the column rela-
tion Y 3 = −kY + (1+ k)Y 2 (k 6= 0, 1). We also assume M(3) has a symmetric
algebraic variety V ; we classify M(3) according to its rank and present the
solutions.

4.1. The case of rank 6 or less.

This category is covered by a recent result proved by L. Fialkow; it says
that if a positive semidefinite M(3)(β) has rank 6 or less, then β admits a
sequence of approximate representing measure (that is, even though M(3) may
not admit positive measure, it can be represented by a measure which is a limit
of a sequence of a positive representing measures), and the subsequence β(5)

has a representing measure [11]. If there is a linear column relation in M(3),
then the required property, (RG), forces rank M(3) to be at most 4 and this
group falls into the above category.

The next argument is about how we have the case of rank M(3) ≥ 7:
Suppose M(3) has no linear column relation but a unique conic relation; say,
X2 is linearly dependent in M(3). Then X3 and X2Y must be dependent as
well. Together with the column relation Y 3 = −kY + (1 + k)Y 2, we know
rank M(3) = 6. A similar argument can be obtained when XY is linearly
dependent. Both cases are under the preceding class. The last possibility is
with the basis of CM(3) being

{

1, X, Y,X2, XY,X3, X2Y
}

. This is the moment
problem on two parallel lines and can be easily handled by Theorem 2.10.

Finally, if there is neither linear nor conic column relation, then the sub-
matrix M(2) is positive definite and rank M(3) ≥ 6. If M(3) is flat, that is,
rank M(3) = 6, then it obviously has a unique 6-atomic measure; otherwise,
the rank of M(3) is at least 7. In the sequel we assume the submatrix M(2) in
M(3) is positive definite and rank M(3) ≥ 7.
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4.2. The case of rank 7.

If rank M(3) = 7, we can find two more cubic column relations besides Y 3 =
−kY + (1 + k)Y 2. Since the associated polynomial of Y 3 = −kY + (1 + k)Y 2

is simply a product of a 3 lines, it is easy to calculate the algebraic variety V
and then the subcases are distinguished by v = card V . M(3) needs to satisfy
the variety condition, so we must have v ≥ 7.

Suppose M(3) has the column relation Y 3 = −kY + (1 + k)Y 2 for some
k ∈ R and has rank 7. Then the possible bases of CM(3) are:

B1 :=
{

1, X, Y,X2, XY, Y 2, X3
}

,

B2 :=
{

1, X, Y,X2, XY, Y 2, X2Y
}

,

B3 :=
{

1, X, Y,X2, XY, Y 2, XY 2
}

.

In order to have a symmetric algebraic variety V , additional column relations
should be like one of the following (because V is symmetric with respect to
x = 0),

X3 = A1X +A2XY,

X2Y = B11+B2Y +B3X
2 +B4Y

2,

XY 2 = C1X + C2XY + C3X
3,

for some Ai, Bi, Ci ∈ R.
We can compute the intersection of each case and observe first that: If X2Y

is linearly dependent, then the intersection of x2y = B1 +B2y +B3x
2 +B4y

2

and y3 = −ky+(1+k)y2 contains at most 5 points, which fact blocks to satisfy
the variety condition. We thus ignore M(3) with the bases B1 or B3. Assume
now that the basis for CM(3) is B2 and let

p1(x, y) := y3 − (1 + k)y2 − ky = y(y − 1)(y − k),

p2(x, y) := x3 −A1x−A2xy,(10)

p3(x, y) := xy2 − C1x− C2xy,

which will appear through this section. We point out that since X3 is linearly
dependent, we may drop C3 from the column relation XY 2 = C1X +C2XY +
C3X

3 and define p3 without the term of x3. The column relations in XY 2 and
Y 3 make Z(p1) ∩ Z(p3) = {(0, 0), (0, 1), (0, k)} unless the polynomial p3 has
two factors among y, y− 1 or y− k; the intersection needs to be the origin and
two lines. Without loss of generality, assume first that p1 and p3 have a single
common factor, say y − 1. Then

p3(x, y) = x(y − 1)(y − α) for some α 6= 0, k.

We see Z(p1)∩Z(p3) = {(0, 0)}∪{(x, 1) : x ∈ R}. By Proposition 2.5, XY = X

must be a column relation for the existence of a measure. Since we assumed
M(2) > 0, this case is beyond our interest. The next possibility is that p1 and
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p3 have two common factors. We may choose p3 among

(11) p3(x, y) = xy(y− 1), p3(x, y) = xy(y− k), or p3(x, y) = x(y− 1)(y− k).

The argument about all 3 p3’s are similar and we focus on the first choice.
Taking p2 in evaluating the variety, we confirm that V may contain at most 7
points, explicitly,

(12) V =
{

(0, 0), (0, 1), (0, k), (±
√

A1, 0), (±
√

A1 +A2, 1)
}

.

To satisfy the variety condition, V must consist of exactly 7 distinct points; the
problem indeed becomes extremal. We also should make sure

(13) A1 > 0 and A1 +A2 > 0.

It is possible to impose on moments ofM(3) the column relations p1(X,Y ) = 0,
p2(X,Y ) = 0, and p3(X,Y ) = 0 without any conflict. Using arguments in the
above, we have the result:

Theorem 4.1. Suppose M(3) is positive semidefinite with an invertible M(2),
rank M(3) = 7 with a column relation Y 3 = −kY + (1 + k)Y 2, and V(M(3))
is symmetric about the y-axis. Then v = 7 if and only if M(3) admits a unique

7-atomic representing measure.

Proof. (=⇒) If v = 7, then there are A1 and A2 satisfying inequalities in
(13); this problem turns out to be extremal. Recall that the solution of an
extremal M(n) is positivity and consistency [5, Theorem 1.3]; we are about
to check consistency of M(3). We investigate the structure of the ideal-like
set J6 := {p ∈ P6 : p|V ≡ 0}. Consider the ideal J := {p ∈ P : p|V ≡ 0} and it
is fortunate that we can easily calculate the Gröebner basis of J that is just
{p1, p2, p3}, where p1, p2, and p3 as in (10). Using the division algorithm for a
multivariable polynomial, a polynomial p ∈ J6 ⊂ J can be written as

p = fp1(x, y) + gp2(x, y) + hp3(x, y) for some f, g, h ∈ P3.

Observe that if M(n) has a column relation q(X,Y ) = 0, then Λ(xiyjq(x, y)) =
0 for 0 ≤ i + j ≤ n; this fact and the linearity of the Riesz functional would
confirm:

Λ(p) = 0 ⇐⇒ Λ(xiyjpk) = 0 for 0 ≤ i+ j ≤ n, 0 ≤ k ≤ 3;

⇐⇒ pk(X,Y ) = 0 for 0 ≤ k ≤ 3.

That is, if the 3 column relations present in M(3), then consistency of M(3) is
immediately established.

(⇐=) Since M(n) has a unique 7-atomic measure, the variety condition
implies v ≥ 7. On the other hand, earlier analysis before (12) shows v ≤ 7 if
rank M(3) = 7; consequently, we know v = 7. �

This result is very relevant to the main result of [6] in which the authors pay
more attention to a specific cubic column relation associated to a symmetric
variety with 7 points.
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4.3. The case of rank 8.

Suppose M(3) has the column relation Y 3 = (1+k)Y 2−kY for some k ∈ R
and has rank 8. As mentioned earlier to satisfy the variety condition, the other
column relation must be one of the two, p2(X,Y ) = 0 or p3(X,Y ) = 0. We
can compute the variety of each case and observe first that if X3 and Y 3 are
dependent, then we know

(14) V=
{

(0, 0), (0, 1), (0, k), (±
√

A1, 0), (±
√

A1+A2, 1), (±
√

A1+A2k, k)
}

.

To have at least 8 distinct points, it is necessary to assume A1 > 0, A1+A2 > 0,
and A1 +A2k > 0. Note that V must contain exactly 9 distinct points rather
than 8 points. This case of M(n) is indeed recursively determined; in the
view of Theorem 2.8 and Corollary 2.9, we know M(3) admits a unique (RG)
extension M(4) and all we need to do is checking positivity of M(4). The
discussion so far proves:

Theorem 4.2. Suppose M(3) is positive semidefinite with an invertible M(2),
V(M(3)) is symmetric on y(y−1)(y−k) = 0 about the y-axis, and

{

1, X, Y,X2 ,

XY, Y 2, X2Y,XY 2
}

is the basis for CM(3). Then the unique (RG) extension

M(4) is positive definite and v = 9 if and only if M(3) has a minimal 8-atomic

representing measure.

The following example illustrates how the above result determines whether
a moment sequence admits a representing measure or not:

Example 4.3. Consider

M(3) =

































7 0 18 42 0 78 0 168 0 378
0 42 0 0 168 0 546 0 808 0
18 0 78 168 0 378 0 808 0 1878
42 0 168 546 0 808 0 2592 0 4008
0 168 0 0 808 0 2592 0 4008 0
78 0 378 808 0 1878 0 4008 0 9378
0 546 0 0 2592 0 8322 0 12832 0

168 0 808 2592 0 4008 0 12832 0 20008
0 808 0 0 4008 0 12832 0 20008 0

378 0 1878 4008 0 9378 0 20008 0 46878

































.

This moment matrix is positive and has two column relations X3 = X + 3XY

and Y 3 = −5Y +6Y 2 (k = 2). The algebraic variety has 9 distinct points, and
so satisfies the variety condition. Propagating the two cubic column relations
forward, we build the (RG) extension M(4) with the quartic column relations
defined as

X4 := X2 + 3X2Y, X3Y := XY + 3XY 2,

XY 3 := −5XY + 6XY 2, Y 4 := −5Y 2 + 6Y 3.

All the 7th- and 8th-order new moments are determined. However, M(4) is
not positive, and hence M(3) dose not have a representing measure. If M(4)
were positive, then M(3) should have admitted an 8-atomic measure.
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The remaining case is when XY 2 and Y 3 are linearly dependent, and we
have:

Theorem 4.4. Suppose M(3) is positive semidefinite with an invertible M(2),
V(M(3)) is symmetric on y(y−1)(y−k) = 0 about the y-axis, and

{

1, X, Y,X2 ,

XY, Y 2, X3, X2Y
}

is the basis for CM(3). Then M(3) admits a minimal 8-

atomic representing measure.

Proof. If XY 2 and Y 3 are linearly dependent, as in the case of rank 7, we know
p3 can be selected among cubics in (11). An important observation is that we
can eliminate the possibilities of p3(x, y) = xy(y− 1) and p3(x, y) = xy(y− k).
For, the intersection of y(y − 1)(y − k) = 0 and one of such p3(x, y) = 0
is the set of all points on y = 0 and either y = 1 or y = k. Thus, the
algebraic variety of M(3) would be either y(y − 1) = 0 or y(y − k) = 0, which
must bring a conic column relation in CM(3) for the existence of a measure
in the view of Proposition 2.5. This is absurd since we assumed M(2) > 0.
We thus may focus on the option p3(x, y) = x(y − 1)(y − k). The algebraic
variety is V = {(0, 0)} ∪ {(x, 1) : x ∈ R} ∪ {(x, k) : x ∈ R} whose cardinality is
infinite. This is a case of rank 8 with an infinite variety; we may adopt a main
result in Section 5 of [7] but we may use a simpler method. We start with a
crucial observation that (0, 0) must be in the support of a measure. For, if not,
Y 2 = (1 + k)Y − k1 must be a column relation in M(3), which is not possible
again by Proposition 2.5. Consequently, M(3) have a representing measure if
and only if M is decomposed as

M(3) = ˜M + uM [δ(0,0)],

where ˜M must have a conic column relation Y 2 = (1 + k)Y − k1 and u > 0.

In order to show ˜M ≥ 0, let I1 ≡ I1(m) be the m×m matrix with 1 in the
(1, 1)-entry and 0 in all other entries (the moment matrix M [δ(0,0)] is exactly
of this type with m = 10). One easily sees that for any α ∈ R

det(A− αI1) = detA− α detA{2,3,...,m}.

This determinant formula gives

(15) det ˜M{1,2,3,4,5,6,7,8} = detM{1,2,3,4,5,6,7,8} − u detM{2,3,4,5,6,7,8}.

If we set u := detM{1,2,3,4,5,6,7,8}/ detM{2,3,4,5,6,7,8}, then det ˜M{1,2,3,4,5,6,7,8}

= 0, and u > 0 due to M ≥ 0. The first essential observation is 7 ≤ rank ˜M ≤

9. Since M and ˜M are different only at (1, 1)-entry and the first column in

M is not involved in the two column relations, ˜M has the same two column

relations. Thus rank ˜M is 7 or 8. But by taking u as above we can bring

another column relation Y 2 = −k1+(1+ k)Y on ˜M so that now rank ˜M = 7.

If the eigenvalues ofM and ˜M are arranged in ascending order with the nota-
tion λk(·) that stands for the k-th greatest eigenvalue of the given matrix, then

we know from Theorem 2.3 that 0 < λ3(M) ≤ λ4(˜M). Since rank ˜M = 7, it
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follows ˜M has the eigenvalue zero with multiplicity 3. Consequently, λk(˜M) = 0

for k = 1, 2, 3 and λk(˜M) > 0 for k = 4, . . . , 10, that is, ˜M is positive semidef-

inite. Applying Theorem 2.10, we know ˜M admits a representing measure; so

does M . Since a minimal measure of ˜M is 7-atomic, we conclude that M has
a minimal 8-atomic representing measure. �

Example 4.5. Consider

M(3) =

































8 0 10 28 0 16 0 36 0 28
0 28 0 0 36 0 196 0 52 0
10 0 16 36 0 28 0 52 0 52
28 0 36 196 0 52 0 228 0 84
0 36 0 0 52 0 228 0 84 0
16 0 28 52 0 52 0 84 0 100
0 196 0 0 228 0 1588 0 292 0
36 0 52 228 0 84 0 292 0 148
0 52 0 0 84 0 292 0 148 0
28 0 52 84 0 100 0 148 0 196

































.

M(3) has the two column relations

XY 2 = −2X + 3XY and Y 3 = −2Y + 3Y 2

and the algebraic variety consists of (0, 0) and all the points on (y−1)(y−2) = 0.
It easy to find u = 1 in (15) and we write

M(3) ≡ ˜M + 1 · I1 =

































7 0 10 28 0 16 0 36 0 28
0 28 0 0 36 0 196 0 52 0
10 0 16 36 0 28 0 52 0 52
28 0 36 196 0 52 0 228 0 84
0 36 0 0 52 0 228 0 84 0
16 0 28 52 0 52 0 84 0 100
0 196 0 0 228 0 1588 0 292 0
36 0 52 228 0 84 0 292 0 148
0 52 0 0 84 0 292 0 148 0
28 0 52 84 0 100 0 148 0 196

































+ I1.

˜M has the additional conic relations Y 2 = −21 + 3Y and satisfies all the
required conditions in Theorem 2.10. Thus, ˜M has a 7-atomic measure and we
conclude that M(3) has a minimal 8-atomic measure.

Finally, for the case of rank 9, we have a single column relation. We can
solve this problem with the results in Section 3. We should mention that when
the moment sequence has a representing measure, the support of the measure
may or may not be symmetric.
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