과제정보
연구 과제 주관 기관 : Science and Technology Foundation of Guizhou Province, Innovation Group Major Program of Guizhou Province
참고문헌
- A. Ambrosetti, H. Brezis, and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519-543. https://doi.org/10.1006/jfan.1994.1078
- A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 347-381.
- P. Amster, P. De Napoli, and M. C. Mariani, Cristina existence of solutions for elliptic systems with critical Sobolev exponent, Electron J. Differential Equations 2002 (2002), no. 49, 13 pp.
- G. Anello, Multiple nonnegative solutions for an elliptic boundary value problem involving combined nonlinearities, Math. Comput. Modelling 52 (2010), no. 1-2, 400-408. https://doi.org/10.1016/j.mcm.2010.03.011
- G. Anello, Multiplicity and asymptotic behavior of nonnegative solutions for elliptic problems involving nonlinearities indefinite in sign, Nonlinear Anal. 75 (2012), no. 8, 3618-3628. https://doi.org/10.1016/j.na.2012.01.019
- H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functional, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486-490. https://doi.org/10.1090/S0002-9939-1983-0699419-3
- C. M. Chu and C. L. Tang, Existence and multiplicity of positive solutions for semilinear elliptic systems with Sobolev critical exponents, Nonlinear Anal. 71 (2009), no. 11, 5118-5130. https://doi.org/10.1016/j.na.2009.03.080
- Q. Y. Dai and L. H. Peng, Necessary and sufficient conditions for the existence of nonnegative solutions of inhomogeneous p-Laplace equation, Acta Math. Sci. Ser. B Engl. Ed. 27 (2007), no. 1, 34-56.
- H. Egnell, Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal. 104 (1988), no. 1, 57-77. https://doi.org/10.1007/BF00256932
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. https://doi.org/10.1016/0022-247X(74)90025-0
- D. G. de Figueiredo, J. P. Gossez, and P. Ubilla, Local "superlinearity" and "sublinearity" for the p-Laplacian, J. Funct. Anal. 3 (2009), no. 3, 721-752.
- J. Garcia Azorero and I. P. Alonso, Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J. 43 (1994), no. 3, 941-957. https://doi.org/10.1512/iumj.1994.43.43041
- J. Garcia Azorero, I. P. Alonso, and J. J. Manfredi, Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), no. 3, 385-404. https://doi.org/10.1142/S0219199700000190
- P. G. Han, Multiple positive solutions of nonhomogeneous elliptic systems involving critical Sobolev exponents, Nonlinear Anal. 64 (2006), no. 4, 869-886. https://doi.org/10.1016/j.na.2005.04.053
- T. S. Hsu, Multiplicity results for p-Laplacian with critical nonlinearity of concaveconvex type and sign-changing weight functions, Abstr. Appl. Anal. 2009 (2009), Art. ID 652109, 24 pp.
- T. S. Hsu and H. L. Lin, Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 6, 1163-1177. https://doi.org/10.1017/S0308210508000875
- T. X. Li and T. F. Wu, Multiple positive solutions for a Dirichlet problem involving critical Sobolev exponent, J. Math. Anal. Appl. 369 (2010), no. 1, 245-257. https://doi.org/10.1016/j.jmaa.2010.03.022
- D. C. de Morais Filho and M. A. S. Souto, Systems of p-Laplacean equations involving homogeneous nonlinearities with critical Sobolev exponent degrees, Comm. Partial Differential Equations 24 (1999), no. 7-8, 1537-1553. https://doi.org/10.1080/03605309908821473
- Y. Shen and J. H. Zhang, Multiplicity of positive solutions for semilinear p-Laplacian system with Sobolev critical exponent, Nonlinear Anal. 74 (2011), 1019-1030. https://doi.org/10.1016/j.na.2010.06.066
- G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. https://doi.org/10.1007/BF02418013
- T. F. Wu, On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function, Commun. Pure Appl. Anal. 7 (2008), no. 2, 383-405. https://doi.org/10.3934/cpaa.2008.7.383