DOI QR코드

DOI QR Code

THREE NONTRIVIAL NONNEGATIVE SOLUTIONS FOR SOME CRITICAL p-LAPLACIAN SYSTEMS WITH LOWER-ORDER NEGATIVE PERTURBATIONS

  • 투고 : 2015.11.26
  • 발행 : 2017.01.31

초록

Three nontrivial nonnegative solutions for some critical quasilinear elliptic systems with lower-order negative perturbations are obtained by using the Ekeland's variational principle and the mountain pass theorem.

키워드

과제정보

연구 과제 주관 기관 : Science and Technology Foundation of Guizhou Province, Innovation Group Major Program of Guizhou Province

참고문헌

  1. A. Ambrosetti, H. Brezis, and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519-543. https://doi.org/10.1006/jfan.1994.1078
  2. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 347-381.
  3. P. Amster, P. De Napoli, and M. C. Mariani, Cristina existence of solutions for elliptic systems with critical Sobolev exponent, Electron J. Differential Equations 2002 (2002), no. 49, 13 pp.
  4. G. Anello, Multiple nonnegative solutions for an elliptic boundary value problem involving combined nonlinearities, Math. Comput. Modelling 52 (2010), no. 1-2, 400-408. https://doi.org/10.1016/j.mcm.2010.03.011
  5. G. Anello, Multiplicity and asymptotic behavior of nonnegative solutions for elliptic problems involving nonlinearities indefinite in sign, Nonlinear Anal. 75 (2012), no. 8, 3618-3628. https://doi.org/10.1016/j.na.2012.01.019
  6. H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functional, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486-490. https://doi.org/10.1090/S0002-9939-1983-0699419-3
  7. C. M. Chu and C. L. Tang, Existence and multiplicity of positive solutions for semilinear elliptic systems with Sobolev critical exponents, Nonlinear Anal. 71 (2009), no. 11, 5118-5130. https://doi.org/10.1016/j.na.2009.03.080
  8. Q. Y. Dai and L. H. Peng, Necessary and sufficient conditions for the existence of nonnegative solutions of inhomogeneous p-Laplace equation, Acta Math. Sci. Ser. B Engl. Ed. 27 (2007), no. 1, 34-56.
  9. H. Egnell, Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal. 104 (1988), no. 1, 57-77. https://doi.org/10.1007/BF00256932
  10. I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. https://doi.org/10.1016/0022-247X(74)90025-0
  11. D. G. de Figueiredo, J. P. Gossez, and P. Ubilla, Local "superlinearity" and "sublinearity" for the p-Laplacian, J. Funct. Anal. 3 (2009), no. 3, 721-752.
  12. J. Garcia Azorero and I. P. Alonso, Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J. 43 (1994), no. 3, 941-957. https://doi.org/10.1512/iumj.1994.43.43041
  13. J. Garcia Azorero, I. P. Alonso, and J. J. Manfredi, Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), no. 3, 385-404. https://doi.org/10.1142/S0219199700000190
  14. P. G. Han, Multiple positive solutions of nonhomogeneous elliptic systems involving critical Sobolev exponents, Nonlinear Anal. 64 (2006), no. 4, 869-886. https://doi.org/10.1016/j.na.2005.04.053
  15. T. S. Hsu, Multiplicity results for p-Laplacian with critical nonlinearity of concaveconvex type and sign-changing weight functions, Abstr. Appl. Anal. 2009 (2009), Art. ID 652109, 24 pp.
  16. T. S. Hsu and H. L. Lin, Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 6, 1163-1177. https://doi.org/10.1017/S0308210508000875
  17. T. X. Li and T. F. Wu, Multiple positive solutions for a Dirichlet problem involving critical Sobolev exponent, J. Math. Anal. Appl. 369 (2010), no. 1, 245-257. https://doi.org/10.1016/j.jmaa.2010.03.022
  18. D. C. de Morais Filho and M. A. S. Souto, Systems of p-Laplacean equations involving homogeneous nonlinearities with critical Sobolev exponent degrees, Comm. Partial Differential Equations 24 (1999), no. 7-8, 1537-1553. https://doi.org/10.1080/03605309908821473
  19. Y. Shen and J. H. Zhang, Multiplicity of positive solutions for semilinear p-Laplacian system with Sobolev critical exponent, Nonlinear Anal. 74 (2011), 1019-1030. https://doi.org/10.1016/j.na.2010.06.066
  20. G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. https://doi.org/10.1007/BF02418013
  21. T. F. Wu, On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function, Commun. Pure Appl. Anal. 7 (2008), no. 2, 383-405. https://doi.org/10.3934/cpaa.2008.7.383