DOI QR코드

DOI QR Code

A NOTE ON ALMOST CONTACT RIEMANNIAN 3-MANIFOLDS II

  • Received : 2015.09.18
  • Published : 2017.01.31

Abstract

We classify Kenmotsu 3-manifolds and cosymplectic 3-manifolds with ${\eta}-parallel$ Ricci operator.

Keywords

References

  1. M. Belkhelfa, F. Dillen, and J. Inoguchi, Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces, in: PDE's, Submanifolds and Affine Differential Geometry (Warsaw, 2000), pp. 67-87, Banach Center Publ. 57, Polish Acad. Sci., Warsaw, 2002.
  2. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, 2002.
  3. D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Math. 34 (1990), no. 1, 199-207. https://doi.org/10.5565/PUBLMAT_34190_15
  4. D. E. Blair and L. Vanhecke, Symmetries and ${\varphi}$-symmetric spaces, Tohoku Math. J. 39 (1987), no. 3, 373-383. https://doi.org/10.2748/tmj/1178228284
  5. J. T. Cho, Local symmetry on almost Kenmotsu three-manifolds, Hokkaido Math. J. 45 (2016), no. 3, 435-442. https://doi.org/10.14492/hokmj/1478487619
  6. J. T. Cho and M. Kimura, Reeb flow symmetry on almost contact three-manifolds, Differential Geom. Appl. 35 (2014), 266-273. https://doi.org/10.1016/j.difgeo.2014.05.002
  7. U. C. De, On ${\Phi}$-symmetric Kenmotsu manifolds, Int. Electron. J. Geom. 1 (2008), no. 1, 33-38.
  8. U. C. De and G. Pathak, On 3-dimensional Kenmotsu manifolds, Indian J. Pure Appl. Math. 35 (2004), no. 2, 159-165.
  9. J. Inoguchi, A note on almost contact Riemannian 3-manifolds, Bull. Yamagata Univ. Natur. Sci. 17 (2010), no. 1, 1-6.
  10. J.-B. Jun, U. C. De, and G. Pathak, On Kenmotsu manifolds, J. Korean Math. Soc. 42 (2005), no. 3, 435-445. https://doi.org/10.4134/JKMS.2005.42.3.435
  11. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103. https://doi.org/10.2748/tmj/1178241594
  12. M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), no. 3, 299-311. https://doi.org/10.1007/BF01159962
  13. M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), no. 3, 277-290. https://doi.org/10.1007/BF01354288
  14. Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math. 47 (1986), 42-50.
  15. B. O'Neill, Semi-Riemannian Geometry with Application to Relativity, Academic Press, Orland, 1983.