References
- M. Belkhelfa, F. Dillen, and J. Inoguchi, Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces, in: PDE's, Submanifolds and Affine Differential Geometry (Warsaw, 2000), pp. 67-87, Banach Center Publ. 57, Polish Acad. Sci., Warsaw, 2002.
- D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, 2002.
- D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Math. 34 (1990), no. 1, 199-207. https://doi.org/10.5565/PUBLMAT_34190_15
-
D. E. Blair and L. Vanhecke, Symmetries and
${\varphi}$ -symmetric spaces, Tohoku Math. J. 39 (1987), no. 3, 373-383. https://doi.org/10.2748/tmj/1178228284 - J. T. Cho, Local symmetry on almost Kenmotsu three-manifolds, Hokkaido Math. J. 45 (2016), no. 3, 435-442. https://doi.org/10.14492/hokmj/1478487619
- J. T. Cho and M. Kimura, Reeb flow symmetry on almost contact three-manifolds, Differential Geom. Appl. 35 (2014), 266-273. https://doi.org/10.1016/j.difgeo.2014.05.002
-
U. C. De, On
${\Phi}$ -symmetric Kenmotsu manifolds, Int. Electron. J. Geom. 1 (2008), no. 1, 33-38. - U. C. De and G. Pathak, On 3-dimensional Kenmotsu manifolds, Indian J. Pure Appl. Math. 35 (2004), no. 2, 159-165.
- J. Inoguchi, A note on almost contact Riemannian 3-manifolds, Bull. Yamagata Univ. Natur. Sci. 17 (2010), no. 1, 1-6.
- J.-B. Jun, U. C. De, and G. Pathak, On Kenmotsu manifolds, J. Korean Math. Soc. 42 (2005), no. 3, 435-445. https://doi.org/10.4134/JKMS.2005.42.3.435
- K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103. https://doi.org/10.2748/tmj/1178241594
- M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), no. 3, 299-311. https://doi.org/10.1007/BF01159962
- M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), no. 3, 277-290. https://doi.org/10.1007/BF01354288
- Z. Olszak, Normal almost contact metric manifolds of dimension three, Ann. Polon. Math. 47 (1986), 42-50.
- B. O'Neill, Semi-Riemannian Geometry with Application to Relativity, Academic Press, Orland, 1983.