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A NOTE ON ALMOST CONTACT RIEMANNIAN

3-MANIFOLDS II

Jun-ichi Inoguchi

Abstract. We classify Kenmotsu 3-manifolds and cosymplectic 3-mani-
folds with η-parallel Ricci operator.

Introduction

It is well known that semi-symmetric Sasakian manifolds are of constant
curvature 1. On the other hand, semi-symmetric Kenmotsu manifolds are of
constant curvature −1. These facts mean that semi symmetry is a strong
restriction for Sasakian and Kenmotsu manifolds.

In 3-dimensional geometry, local symmetry, i.e., the parallelism of the Rie-
mannian curvature R is equivalent to the parallelism of the Ricci operator S.

Cho and Kimura showed that Kenmotsu 3-manifolds whose Ricci operator
is parallel along the characteristic flow are of constant curvature −1 [6].

In this paper we study more mild condition on the Ricci operator. More pre-
cisely we study Kenmotsu 3-manifolds and cosymplectic 3-manifolds satisfying
the following η-parallel condition:

g((∇XS)Y, Z) = 0

for all vector fields X , Y and Z orthogonal to the structure vector field ξ.
We classify Kenmotsu 3-manifolds satisfying this condition. Moreover we

show that there exist Kenmotsu 3-manifolds of non-constant curvature which
have η-parallel Ricci operator. In addition we also study cosymplectic 3-
manifolds and Sasakian 3-manifolds with η-parallel Ricci operator.
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1. Preliminaries

1.1. Let (M, g) be a Riemannian m-manifold with its Levi-Civita connection
∇. Denote by R the Riemannian curvature of M :

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ], X, Y ∈ X(M).

Here X(M) is the Lie algebra of all vector fields on M .
For an endomorphism field F on M , its divergence divF is a vector field

defined by

divF = trg(∇F ) =

m
∑

i=1

(∇eiF )ei.

Here {ei}
m
i=1 is a local orthonormal frame field of (M, g).

One can see that the differential dr of the scalar curvature r is related to
the divergence of the Ricci operator S by ([15]):

(1.1) dr = 2g(divS, ·).

A Riemannian manifold (M, g) is said to be locally symmetric if R is parallel,
i.e., ∇R = 0. Clearly every Riemannian manifolds of constant curvature is
locally symmetric. More generally (M, g) is said to be semi-symmetric if R is
semi-parallel, i.e., R · R = 0.

1.2. In case m = dimM = 3, the Riemannian curvature R is determined by
the Ricci tensor ρ. In fact, R is expressed as

R(X,Y )Z = ρ(Y, Z)X − ρ(Z,X)Y(1.2)

+ g(Y, Z)SX − g(Z,X)SY −
r

2
(X ∧ Y )Z,

where (X ∧ Y )Z is a curvature-like tensor field defined by

(X ∧ Y )Z = g(Y, Z)X − g(Z,X)Y, X, Y, Z ∈ X(M).

The formula (1.2) implies that a Riemannian 3-manifold (M, g) is locally sym-
metric if and only if R is semi-parallel, that is, R ·S = 0. More generally (M, g)
is semi-symmetric if and only if S is semi-parallel.

2. Almost contact Riemannian manifolds

2.1. LetM be a (2n+1)-dimensional manifold. An almost contact structure on
M is a quadruple of tensor fields (ϕ, ξ, η, g), where ϕ is an endomorphism field,
ξ is a vector field, η is a one-form and g is a Riemannian metric, respectively,
such that

(2.1) ϕ2 = −I + η ⊗ ξ, η(ξ) = 1,

(2.2) g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), X, Y ∈ X(M).
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An (2n + 1)-dimensional manifold together with an almost contact structure
is called an almost contact Riemannian manifold (or almost contact metric

manifold) [2]. The fundamental 2-form Φ of M is defined by

Φ(X,Y ) = g(X,ϕY ), X, Y ∈ X(M).

If an almost contact Riemannian manifold (M ;ϕ, ξ, η, g) satisfies the condition:

(2.3) ρ = ag + bη ⊗ η

for some functions a and b, then M is said to be η-Einstein.
An almost contact Riemannian manifold M is said to be normal if it satisfies

[ϕ, ϕ] + 2dη ⊗ ξ = 0, where [ϕ, ϕ] is the Nijenhuis torsion of ϕ.

Definition 2.1. An almost contact Riemannian manifold M is said to be an
almost Kenmotsu manifold if it satisfies dη = 0 and dΦ = 2η ∧ Φ. A normal
almost Kenmotsu manifold is called a Kenmotsu manifold.

Definition 2.2. An almost contact Riemannian manifold M is said to be an
almost cosymplectic manifold if it satisfies dη = 0 and dΦ = 0. A normal
almost cosymplectic manifold is called a cosymplectic manifold.

Definition 2.3. An almost contact Riemannian manifold M is said to be a
contact Riemannian manifold if it satisfies dη = Φ. A normal contact Rie-
mannian manifolds is called a Sasakian manifold.

A tangent plane Πp at a point p of an almost contact Riemannian manifold
M is said to be holomorphic (or ϕ-section) if it is invariant under ϕp. It is easy
to see that a tangent plane Πp is holomorphic if and only if ξp is orthogonal
to Πp. The sectional curvature K(Πp) of a holomorphic plane Πp is called the
holomorphic sectional curvature (or ϕ-sectional curvature) of M .

2.2. For an arbitrary almost contact Riemannian 3-manifoldM , we have ([14]):

(2.4) (∇Xϕ)Y = g(ϕ∇Xξ, Y )ξ − η(Y )ϕ∇Xξ.

Moreover, we have

dη = η ∧ ∇ξη + αΦ, dΦ = 2βη ∧ Φ,

where α and β are the functions defined by

(2.5) α =
1

2
trg(ϕ∇ξ), β =

1

2
trg(∇ξ) =

1

2
divξ.

Olszak [14] showed that an almost contact Riemannian 3-manifold M is
normal if and only if ∇ξ ◦ ϕ = ϕ ◦ ∇ξ or, equivalently,

(2.6) ∇Xξ = −αϕX + β(X − η(X)ξ), X ∈ X(M).

We call the pair (α, β) the type of a normal almost contact Riemannian 3-
manifold M .
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Using (2.4) and (2.6) we note that the covariant derivative ∇ϕ of ϕ on a
3-dimensional normal almost contact Riemannian manifold is given by

(2.7) (∇Xϕ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(ϕX, Y )ξ − η(Y )ϕX).

Moreover M satisfies (see [3]):

2αβ + ξ(α) = 0.

Thus if α is a nonzero constant, then β = 0. In particular a Kenmotsu 3-
manifold is a normal almost contact Riemannian 3-manifold of type (0, 1).
Cosymplectc 3-manifolds are characterised as almost contact Riemannian 3-
manifolds of type (0, 0). A Sasakian manifold is a normal almost contact Rie-
mannian manifold of type (1, 0).

Next, we consider η-Einstein normal almost contact Riemannian 3-manifolds.

Proposition 2.1. Let M be a normal almost contact Riemannian 3-manifold

of type (α, β). Then M is η-Einstein if and only if

g(gradβ − ϕgradα,X) = 0

for all X ∈ X(M) orthogonal to ξ. In this case, the Ricci operator S = aI+bη⊗ξ

has coefficients:

a =
r

2
+ dβ(ξ) − (α2 − β2), b = −

r

2
− 3dβ(ξ) + 3(α2 − β2).

In particular, cosymplectic 3-manifolds, Kenmotsu 3-manifolds and Sasakian
3-manifolds are η-Einstein.

2.3. Kenmotsu 3-manifolds. Let (M ;ϕ, ξ, η, g) be a Kenmotsu 3-manifold. Then
we have

(2.8) (∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX,

(2.9) ∇Xξ = X − η(X)ξ

for all X , Y ∈ X(M).
In particular we have ∇ξξ = 0. Hence on Kenmotsu 3-manifolds, integral

curves (trajectories) of ξ are geodesics.
Every Kenmotsu 3-manifold is η-Einstein with Ricci operator

S =
1

2
(r + 2)I−

1

2
(r + 6)η ⊗ ξ.

The scalar curvature r is related to the holomorphic sectional curvature func-
tion H by H = r/2 + 2.

Corollary 2.1. The Riemannian curvature of a Kenmotsu 3-manifold is given

by

R(X,Y )Z =
r + 4

2
(X ∧ Y )Z +

r + 6

2
[ξ ∧ {(X ∧ Y )ξ}]Z.
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This curvature formula implies that a Kenmotsu 3-manifold M has constant
scalar curvature r = −6 if and only if it is of constant curvature −1.

More generally we have:

Proposition 2.2 (cf. [9]). A Kenmotsu 3-manifold M has constant scalar

curvature if and only if M is of constant curvature −1.

Proof. The divergence divS is computed as

divS =
1

2
gradr −

1

2
dr(ξ)ξ − (r + 6)ξ.

Thus if r is constant, then r = −6 and hence M is of constant curvature −1.
Conversely if M is of constant curvature −1, then r = −6. �

From the divergence formula for S, we have

dr(ξ) = 2g(divS, ξ) = ξ(r) − ξ(r) − (r + 6) = −(r + 6).

Hence we obtain the following result.

Proposition 2.3. Let M be a Kenmotsu 3-manifold. Then M satisfies dr(ξ) =
0 if and only if r is constant −6.

Corollary 2.2. A Kenmotsu 3-manifold satisfies the condition

(2.10) ϕ2{(∇WR)(X,Y )Z} = 0

for all X, Y , Z, W ∈ X(M) orthogonal to ξ if and only if M is of constant

curvature −1.

Proof. De and Pathak [7, 8] showed that M satisfies (2.10) for all X , Y , Z,
W ∈ X(M) orthogonal to ξ if and only if M is of constant scalar curvature.
As we have seen above, M is of constant scalar curvature if and only if M is
of constant curvature −1. �

Note that all the examples of Kenmotsu 3-manifold exhibited in [7, Examples
5.1, 5.2, 5.3] are of constant curvature −1.

3. η-parallelism

3.1. Kenmotsu [11] showed that locally symmetric Kenmotsu manifolds are
of constant curvature −1. Thus for Kenmotsu manifolds, local symmetry is a
very strong restriction. Instead of local symmetry, we study η-parallelism for
the Ricci operator.

First we recall the notion of η-parallelism in the sense of Kimura and Maeda.

Definition 3.1 (cf. [12]). An endomorphism field P of an almost contact
Riemannian manifold M is said to be η-parallel if

g((∇XP )Y, Z) = 0

for all vector fields X , Y and Z orthogonal to ξ.

On the other hand Kon introduced the notion of η-parallelism as follows:



90 JUN-ICHI INOGUCHI

Definition 3.2 ([13]). The Ricci tensor field ρ of an almost contact Riemannian
manifold M is said to be η-parallel if

(∇Xρ)(ϕY, ϕZ) = 0

for all vector fields X , Y and Z on M .

Now we apply these η-parallelisms on Kenmotsu 3-manifolds. By definition
we have

(∇Xρ)(ϕY, ϕZ) = g((∇XS)ϕY, ϕZ)

for all X ∈ X(M) and Y and Z orthogonal to ξ. Hence the η-parallelism of
the Ricci tensor field ρ on an almost contact Riemannian 3-manifold M in the
sense of Kon is equivalent to

g((∇XS)Y, Z) = 0

for all X ∈ X(M) and Y and Z orthogonal to ξ. Thus the η-parallelism of ρ in
the sense of Kon is stronger than that of S in the sense of Kimura-Maeda.

To distinguish these two η-parallelisms, we call the η-parallelism in the sense
of Kon by the name, “strong η-parallelism”.

4. Kenmotsu 3-manifolds with strongly η-parallel S

4.1. We start our discussions with η-Einstein almost contact Riemannian 3-
manifolds with η-parallel Ricci operator.

Express the Ricci operator S of an η-Einstein almost contact Riemannian
3-manifold M as S = aI + bη ⊗ ξ, then we have

(4.1) (∇XS)Y = da(X)Y + db(X)η(Y )ξ + b{(∇Xη)Y }ξ

for all X , Y , Z ∈ X(M).

4.2. Let us assume that M is a Kenmotsu 3-manifold. Then we have

(∇Xη)Y = g(∇Xξ, Y ) = g(X,Y )− η(X)η(Y )

for all X , Y ∈ X(M). Hence from (4.1),

g((∇XS)Y, Z) = da(X)g(Y, Z) + db(X)η(Y )η(Z)(4.2)

+ b{g(X,Y )− η(X)η(Y )}η(Z)

for all X , Y , Z ∈ X(M). Next, since

a =
1

2
(r + 2), b = −

1

2
(r + 6)

on Kenmotsu 3-manifolds, we get

g((∇XS)Y, Z) =
1

2
dr(X)g(Y, Z)

for all X , Y and Z ∈ X(M) with η(Y ) = η(Z) = 0.
Now we take a local orthonormal frame field {e1, e2, e3} of M of the form

e2 = ϕe1, η(e1) = 0 and e3 = ξ.
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If we choose X = Y = Z = ei (i = 1, 2), then we get dr(ei) = 0 for i = 1, 2.
Thus S is η-parallel if and only if dr(X) = 0 for any X orthogonal to ξ.

Proposition 4.1. A Kenmotsu 3-manifold M has η-parallel Ricci operator if

and only if its scalar curvature satisfies dr(X) = 0 for any tangent vector X

orthogonal to ξ.

Next we assume that M has strongly η-parallel Ricci operator, then we have

0 = g((∇ξS)ei, ei) =
1

2
dr(ξ), i = 1, 2.

This implies that r = −6. Thus we obtain an alternative proof to the following
result due to De and Pathak.

Proposition 4.2 ([8]). A Kenmotsu 3-manifold M has strongly η-parallel Ricci

operator if and only if M is of constant curvature −1.

Summing up our results, we get:

Theorem 4.1. Let M be a Kenmotsu 3-manifolds. Then the following prop-

erties are mutually equivalent:

• The scalar curvature r is constant along the trajectories of ξ, i.e.,

ξ(r) = 0.
• The scalar r is constant.

• The scalar curvature is −6.
• The holomorphic sectional curvature function H is constant.

• The Ricci operator is strongly η-parallel.

• M is locally symmetric.

• M is of constant curvature −1.

Remark 1. Jun, De and Pathak showed that Kenmotsu manifolds of arbitrary
odd dimension with strongly η-parallel Ricci operator has constant scalar cur-
vature [10, Theorem 5].

In the next section we classify Kenmotsu 3-manifolds with η-parallel Ricci
operator.

5. Kenmotsu 3-manifolds with η-parallel S

5.1. Warped products. We start with the standard examples of Kenmotsu 3-
manifold.

Let (N, h, J) be an oriented Riemannian 2-manifold together with the com-
patible orthogonal complex structure J . Take a direct product M = E

1(t)×N

of real line and N . We denote π and σ the natural projections onto the first
and second factors,

π : M → E
1, σ : M → N,

respectively. On the direct product M , we equip a Riemannian metric g defined
by

g = dt2 + f(t)2π∗h.
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Here f is a positive function on E
1(t). The resulting Riemannian manifold

(M, g) is denoted by E
1 ×f N and called the warped product with base E

1 and
fibre N . The function f is called the warping function.

On the warped product M = E
1×fN , we define the vector field ξ by ξ = ∂

∂t
.

Then the Levi-Civita connection ∇ of M is given by (cf. [15]):

∇X
vY

v
= (∇XY )v −

1

f
g(X

v
, Y

v
)f ′ξ,

∇ξX
v
= ∇X

vξ =
f ′

f
X

v
,

∇ξξ = 0.

Here the superscript v means the vertical lift operation of vector fields from N

to M . Define an endomorphim field ϕ on M by ϕX = {J(σ∗X)}v. Then we
get

∇Xξ = β(X − η(X)ξ),

(∇Xϕ)Y = β{g(ϕX, Y )− η(Y )ϕX}, β = f ′/f.

Hence M = E
1×fN is a normal almost contact Riemannian 3-manifold of type

(0, β). In particular, E1 ×f N is a Kenmotsu manifold if and only if f(t) = cet

for some positive constant c. Take a local orthonormal frame field {ē1, ē2} of
(N, h) such that ē2 = Jē1. Then we obtain a local orthonormal frame field
{e1, e2, e3} by

e1 =
1

f
ēv1 , e2 =

1

f
ēv2 = ϕe1, e3 = ξ.

Then sectional curvatures of M are given by

K(e1 ∧ e2) =
1

f2
{κ− (f ′)2}, K(e1 ∧ e3) = K(e2 ∧ e3) = −

f ′′

f
,

where κ is the Gaussian curvature of N . The components ρij = ρ(ei, ej) of
Ricci tensor field are given by

ρ11 = ρ22 =
κ

f2
−

f ′′

f
−

(

f ′

f

)2

, ρ33 = −
2f ′′

f
.

Now we assume that M is a Kenmotsu manifold, that is, we choose f(t) = cet,
then we have

ρ11 = ρ22 =
κ

c2e2t
− 2, ρ33 = −2.

Thus we have

r =
2κ

c2e2t
− 6.
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5.2. The local structure of Kenmotsu manifolds is described as follows.

Lemma 5.1 ([11]). A Kenmotsu 3-manifold M is locally isomorphic to a

warped product I ×f N whose base I ⊂ E
1(t) is an open interval, N is a

surface and warping function f(t) = cet, c > 0. The structure vector field is

ξ = ∂/∂t.

Now let M be a Kenmotsu 3-manifold and take a local warped product
representation I ×cet N .

Take a local isothermal coordinates (x, y) on N and represent h as h =
eω(dx2 + dy2). Then

ē1 = e−ω/2 ∂

∂x
, ē2 = e−ω/2 ∂

∂y
.

Thus we have that S is η-parallel if and only if κx = κy = 0, that is, κ is
constant. Under the constancy of κ, dr(ξ) = 0 holds if and only if κ = 0. In
this case M is of constant curvature −1.

Theorem 5.1. A Kenmotsu 3-manifold has η-parallel Ricci operator if and

only if it is locally isomorphic to the warped product E1 ×cet N , where N is of

constant curvature.

Thus the global warped products

E
1 ×cet S

2(κ), E
1 ×cet H

2(κ)

are Kenmotsu 3-manifolds whose Ricci operator is η-parallel but not strongly
η-parallel.

Remark 2. In [6], Cho and Kimura showed that a Kenmotsu 3-manifold M

satisfies £ξS = 0 if and only if M is of constant curvature −1. They also
showed that Kenmotsu 3-manifolds whose Ricci operator is parallel along the
characteristic flow (i.e., ∇ξS = 0) are of constant curvature −1. Recently Cho
classified locally symmetric almost Kenmotsu 3-manifolds [5].

Problem 5.1. (1) Classify almost Kenmotsu 3-manifolds with η-parallel
Ricci operator.

(2) Classify Kenmotsu 3-manifolds with semi η-parallel Ricci operator, i.e.,

g((R(X,Y )S)Z,W ) = 0

for all vector fields X , Y , Z and W orthogonal to ξ.

6. Cosymplectic 3-manifolds

In this section we study cosymplectic 3-manifolds with η-parallel Ricci op-
erator. On a cosymplectic 3-manifold M , we have

∇ϕ = 0, ∇ξ = 0.

In particular we have ∇ξξ = 0. Hence on cosymplectic 3-manifolds, integral
curves (trajectories) of ξ are geodesics.
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Example 6.1. Let (N, h, J) be an oriented Riemannian 2-manifold with the
compatible complex structure J . On the direct product manifold M = N ×E

1

of N with the real line E1(t), we equip the product metric g = π∗h+ dt2. Here
π : M → N is the natural projection. Define the endomorphism field ϕ on M

by
ϕX = {Jπ∗X}h,

where h is the horizontal lift operation. Define the vector field ξ and the 1-
form η by ξ = ∂/∂t and η = dt. Then the resulting almost contact Riemannain
3-manifold (M,ϕ, ξ, η, g) is cosymplectic.

The local structure of cosymplectic 3-manifolds is described as follows.

Lemma 6.1 ([4, Lemma 2]). A cosymplectic 3-manifold M is locally isomor-

phic to the Riemannian product N × I whose base N = (N, h) is a Riemannin

2-mnanifold. The standard fibre I is an open interval with coordinate t. The

metric is g = π∗h + dt2, where π : N × I → N is the natural projection. The

structure vector field is ξ = ∂/∂t.

Every cosymplectic 3-manifold is η-Einstein with Ricci operator

S =
r

2
I−

r

2
η ⊗ ξ.

The holomorphic sectional curvature function H is given by H = r/2.

Corollary 6.1. The Riemannian curvature of a cosymplectic 3-manifold is

given by

R(X,Y )Z =
r

2
[ξ ∧ {(X ∧ Y )ξ}]Z.

Using this formula, the covariant derivative of S is computed as

(6.1) (∇XS)Y =
1

2
dr(X)(Y − η(Y )ξ).

The divergence divS is computed as

divS =
1

2
(gradr − η(gradr)ξ).

This implies the formula

dr(X) = g(gradr,X)− η(gradr)η(X).

Equivalently,
dr = dr − η(gradr)η

From this formula we have ξ(r) = 0. This implies that divS = gradr/2 and
∇ξS = 0.

Now let us consider cosymplectic 3-manifolds with η-parallel Ricci operator.
If we assume that η(Y ) = η(Z) = 0, in (6.1), we obtain

g((∇XS)Y, Z) =
1

2
dr(X)g(Y, Z) = 0

for all X ∈ X(M).
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Now we take a local orthonormal frame field {e1, e2, e3} of the form e2 = ϕe1,
η(e1) = 0 and e3 = ξ. If we choose X = Y = Z = ei in (6.1) for i = 1,2, then
we get dr(ei) = 0 for i = 1, 2. Thus S is η-parallel if and only if dr(X) = 0
for any vector field X orthogonal to ξ. Since we know that dr(ξ) = 0, S is
η-parallel if and only if S is strongly η-parallel.

Proposition 6.1. Let M be a cosymplectic 3-manifold with Ricci operator S.

Then S is η-parallel if and only if r is constant. In such a case S is strongly

η-parallel.

Since the holomorphic sectional curvature function H is related to r by
H = r/2, the η-parallelism of S is equivalent to the constancy of H .

Corollary 6.2. Let M be a cosymplectic 3-manifold with Ricci operator S.

Then S is η-parallel if and only if M has constant holomorphic sectional cur-

vature.

Let (N, h) be an oriented Riemannian 2-manifold andM = N×E
1 the direct

product with product metric. We equip the natural cosymplectic structure on
M . Then the scalar curvature r of M is r = 2κh. Here κ is the Gaussian
curvature. Hence S is η-parallel if and only if κ is constant.

Thus S
2(κ) × E

1 and H
2(κ) × E

1 are non-constant curvature cosymplectic
manifolds with η-parallel Ricci operator.

Theorem 6.1. Let M be a cosymplectic 3-manifold. Then the following prop-

erties are mutually equivalent:

• The scalar curvature is constant.

• The holomorphic sectional curvature function H is constant.

• The Ricci operator is η-parallel.

• The Ricci operator is strongly η-parallel.

• M is locally symmetric.

7. Sasakian 3-manifolds

For a Sasakian 3-manifold M , we have

S = aI + bη ⊗ ξ, a =
1

2
(r − 2), b =

1

2
(6− r).

The holomorphic sectional curvature is H = r/2 − 2. Hence we get

divS =
1

2
(gradr − dr(ξ)ξ).

This formula implies dr = dr − dr(ξ)η. Hence we have dr(ξ) = 0.
Moreover we have

g((∇XS)Y, Z) =
1

2
dr(X)g(Y, Z)

for allX ∈ X(M) and Y , Z orthogonal to ξ. The Ricci operator S on a Sasakian
3-manifold M is η-parallel if and only if dr(X) = 0 for all X orthogonal to ξ.
Since ξ(r) = 0 holds on every Sasakian 3-manifold, we have the following result.
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Proposition 7.1. The following properties are mutually equivalent for Sasa-

kian 3-manifolds.

• The scalar curvature r is constant.

• The holomorphic sectional curvature H is constant.

• The Ricci operator is η-parallel.

• The Ricci operator is strongly η-parallel.

Thus 3-dimensional Sasakian space forms are examples of Sasakian 3-manifolds
with strongly η-parallel Ricci operator. As is well known Sasakian 3-manifold
is locally symmetric if and only if it is of constant curvature 1.

Among the three classes (cosymplectic, Kenmotsu, Sasakian), only for the
class of Kenmotsu 3-manifolds, η-parallelism of S is weaker than the strong
η-parallelism of S.

Remark 3. Sasakian manifolds Nil3 = R
3(−3) and ˜SL2R, cosymplectic 3-

manifolds S2(κ)×E
1 and H

2(κ)×E
1 are model spaces of Thurston geometries.

Moreover these space are included in the 2-parameter family of homogeneous
Riemannian spaces referred as to the Bianchi-Cartan-Vranceanu family, see [1].
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