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A NOTE ON ALMOST CONTACT RIEMANNIAN
3-MANIFOLDS II

JUN-ICHI INOGUCHI

ABSTRACT. We classify Kenmotsu 3-manifolds and cosymplectic 3-mani-
folds with n-parallel Ricci operator.

Introduction

It is well known that semi-symmetric Sasakian manifolds are of constant
curvature 1. On the other hand, semi-symmetric Kenmotsu manifolds are of
constant curvature —1. These facts mean that semi symmetry is a strong
restriction for Sasakian and Kenmotsu manifolds.

In 3-dimensional geometry, local symmetry, i.e., the parallelism of the Rie-
mannian curvature R is equivalent to the parallelism of the Ricci operator S.

Cho and Kimura showed that Kenmotsu 3-manifolds whose Ricci operator
is parallel along the characteristic flow are of constant curvature —1 [6].

In this paper we study more mild condition on the Ricci operator. More pre-
cisely we study Kenmotsu 3-manifolds and cosymplectic 3-manifolds satisfying
the following n-parallel condition:

9g((VxS)Y,Z)=0

for all vector fields X, Y and Z orthogonal to the structure vector field &.

We classify Kenmotsu 3-manifolds satisfying this condition. Moreover we
show that there exist Kenmotsu 3-manifolds of non-constant curvature which
have n-parallel Ricci operator. In addition we also study cosymplectic 3-
manifolds and Sasakian 3-manifolds with n-parallel Ricci operator.
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1. Preliminaries

1.1. Let (M, g) be a Riemannian m-manifold with its Levi-Civita connection
V. Denote by R the Riemannian curvature of M:

R(X,Y)=[Vx,Vy] - Vixy, X,Y €X(M).

Here X(M) is the Lie algebra of all vector fields on M.
For an endomorphism field F' on M, its divergence divF is a vector field
defined by

divF = trg(VF) = > (Ve Fe;.
i=1
Here {e;}", is a local orthonormal frame field of (M, g).
One can see that the differential dr of the scalar curvature r is related to
the divergence of the Ricci operator S by ([15]):

(1.1) dr = 2¢(divS, -).

A Riemannian manifold (M, g) is said to be locally symmetric if R is parallel,
i.e., VR = 0. Clearly every Riemannian manifolds of constant curvature is
locally symmetric. More generally (M, g) is said to be semi-symmetric if R is
semi-parallel, i.e., R- R = 0.

1.2. In case m = dim M = 3, the Riemannian curvature R is determined by
the Ricci tensor p. In fact, R is expressed as
(1.2) R(X,Y)Z =p(Y,2)X — p(Z,X)Y
+9(Y,2)SX — g(Z,X)SY — g(x AY)Z,
where (X AY)Z is a curvature-like tensor field defined by
(XAY)VZ=9(Y,2)X —9g(Z,X)Y, X,Y,Z € X(M).

The formula (1.2) implies that a Riemannian 3-manifold (M, g) is locally sym-
metric if and only if R is semi-parallel, that is, R-S = 0. More generally (M, g)
is semi-symmetric if and only if S is semi-parallel.

2. Almost contact Riemannian manifolds

2.1. Let M be a (2n+1)-dimensional manifold. An almost contact structure on
M is a quadruple of tensor fields (¢, &, 7, g), where ¢ is an endomorphism field,
¢ is a vector field, 7 is a one-form and g is a Riemannian metric, respectively,
such that

(2.1) P’ =—-IT+n®¢ nE) =1,

(2.2) 9(eX,0Y) = g(X,Y) =n(X)n(Y), X,Y € X(M).



ALMOST CONTACT RIEMANNIAN 3-MANIFOLDS 87

An (2n + 1)-dimensional manifold together with an almost contact structure
is called an almost contact Riemannian manifold (or almost contact metric
manifold) [2]. The fundamental 2-form ® of M is defined by

O(X,)Y) =g(X,¢Y), XY €X(M).
If an almost contact Riemannian manifold (M; e, £, n, g) satisfies the condition:
(2.3) p=ag+bn®n

for some functions a and b, then M is said to be n-Finstein.
An almost contact Riemannian manifold M is said to be normal if it satisfies
[p, ¢] + 2dn ® & = 0, where [p, ¢] is the Nijenhuis torsion of .

Definition 2.1. An almost contact Riemannian manifold M is said to be an
almost Kenmotsu manifold if it satisfies dn = 0 and d® = 2n A ®. A normal
almost Kenmotsu manifold is called a Kenmotsu manifold.

Definition 2.2. An almost contact Riemannian manifold M is said to be an
almost cosymplectic manifold if it satisfies dnp = 0 and d® = 0. A normal
almost cosymplectic manifold is called a cosymplectic manifold.

Definition 2.3. An almost contact Riemannian manifold M is said to be a
contact Riemannian manifold if it satisfies dn = ®. A normal contact Rie-
mannian manifolds is called a Sasakian manifold.

A tangent plane II, at a point p of an almost contact Riemannian manifold
M is said to be holomorphic (or p-section) if it is invariant under ¢,. It is easy
to see that a tangent plane II, is holomorphic if and only if &, is orthogonal
to II,. The sectional curvature K (II,) of a holomorphic plane II, is called the
holomorphic sectional curvature (or g-sectional curvature) of M.

2.2. For an arbitrary almost contact Riemannian 3-manifold M, we have ([14]):
(2.4) (Vxp)Y =g(pVxE,Y)E —n(Y)pVxE.
Moreover, we have

dn=nAVen+a®, dd=28nA0e,

where a and (8 are the functions defined by

1 1 1

(2.5) a= §trg(<pV§), 8= Etrg(V«E) = 5div§.
Olszak [14] showed that an almost contact Riemannian 3-manifold M is

normal if and only if V& o ¢ = ¢ o V¢ or, equivalently,

(2.6) Vx§=—apX +4(X —n(X)§), X e X(M).

We call the pair (a, ) the type of a normal almost contact Riemannian 3-
manifold M.
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Using (2.4) and (2.6) we note that the covariant derivative Vi of ¢ on a
3-dimensional normal almost contact Riemannian manifold is given by

2.7 (Vx)Y = a(g(X, V) —n(Y)X) + B(g(pX, Y)E = n(Y)pX).
Moreover M satisfies (see [3]):
208+ &(a) = 0.

Thus if « is a nonzero constant, then 8 = 0. In particular a Kenmotsu 3-
manifold is a normal almost contact Riemannian 3-manifold of type (0,1).
Cosymplectc 3-manifolds are characterised as almost contact Riemannian 3-
manifolds of type (0,0). A Sasakian manifold is a normal almost contact Rie-
mannian manifold of type (1, 0).

Next, we consider n-Einstein normal almost contact Riemannian 3-manifolds.

Proposition 2.1. Let M be a normal almost contact Riemannian 3-manifold
of type (o, B). Then M is n-Einstein if and only if
g(gradf — pgrada, X) =0

for all X € X(M) orthogonal to §. In this case, the Ricci operator S = al+bn®§&
has coefficients:
a=5+d3(¢) — (@ = ), b=—5—3dB(¢) +3(a” — 7).

In particular, cosymplectic 3-manifolds, Kenmotsu 3-manifolds and Sasakian
3-manifolds are n-Einstein.

2.3. Kenmotsu 3-manifolds. Let (M;p,&,n,g) be a Kenmotsu 3-manifold. Then
we have

(2.8) (Vxp)Y = g(pX,Y){ —n(Y)pX,

(2.9) Vx&=X —n(X)¢

for all X, Y € X(M).

In particular we have V¢£ = 0. Hence on Kenmotsu 3-manifolds, integral
curves (trajectories) of & are geodesics.

Every Kenmotsu 3-manifold is n-Einstein with Ricci operator

1

I- §(r+6)77®§.

The scalar curvature r is related to the holomorphic sectional curvature func-
tion H by H =1r/2+ 2.

S:%(r+2)

Corollary 2.1. The Riemannian curvature of a Kenmotsu 3-manifold is given

by
4
R(X,Y)Z = &

(X AY)Z + #[g AMX AY)ENZ.



ALMOST CONTACT RIEMANNIAN 3-MANIFOLDS 89

This curvature formula implies that a Kenmotsu 3-manifold M has constant
scalar curvature r = —6 if and only if it is of constant curvature —1.
More generally we have:

Proposition 2.2 (c¢f. [9]). A Kenmotsu 3-manifold M has constant scalar
curvature if and only if M is of constant curvature —1.

Proof. The divergence divS is computed as
1 1
divS = agradr - §dr(§)§ — (r+6)¢&.

Thus if r is constant, then »r = —6 and hence M is of constant curvature —1.
Conversely if M is of constant curvature —1, then r = —6. O

From the divergence formula for S, we have
dr(§) = 2g(divs, &) = &(r) —&(r) — (r +6) = —(r +6).

Hence we obtain the following result.
Proposition 2.3. Let M be a Kenmotsu 3-manifold. Then M satisfies dr(§) =
0 if and only if r is constant —6.
Corollary 2.2. A Kenmotsu 3-manifold satisfies the condition
(2.10) AT R)(X,Y)Z} =0
for ol X, Y, Z, W € X(M) orthogonal to & if and only if M is of constant

curvature —1.

Proof. De and Pathak [7, 8] showed that M satisfies (2.10) for all X, Y, Z,
W € X(M) orthogonal to £ if and only if M is of constant scalar curvature.
As we have seen above, M is of constant scalar curvature if and only if M is
of constant curvature —1. (|

Note that all the examples of Kenmotsu 3-manifold exhibited in [7, Examples
5.1, 5.2, 5.3] are of constant curvature —1.

3. m-parallelism

3.1. Kenmotsu [11] showed that locally symmetric Kenmotsu manifolds are
of constant curvature —1. Thus for Kenmotsu manifolds, local symmetry is a
very strong restriction. Instead of local symmetry, we study n-parallelism for
the Ricci operator.

First we recall the notion of n-parallelism in the sense of Kimura and Maeda.

Definition 3.1 (¢f. [12]). An endomorphism field P of an almost contact
Riemannian manifold M is said to be n-parallel if

9g(VxP)Y,Z) =0
for all vector fields X, Y and Z orthogonal to &.

On the other hand Kon introduced the notion of n-parallelism as follows:



90 JUN-ICHI INOGUCHI

Definition 3.2 ([13]). The Ricci tensor field p of an almost contact Riemannian
manifold M is said to be n-parallel if

(Vxp)(¢Y,9Z) =0
for all vector fields X, Y and Z on M.

Now we apply these n-parallelisms on Kenmotsu 3-manifolds. By definition
we have
(Vxp) (@Y, 0Z) = g((VxS)pY, 0Z)
for all X € X(M) and Y and Z orthogonal to £. Hence the n-parallelism of
the Ricci tensor field p on an almost contact Riemannian 3-manifold M in the
sense of Kon is equivalent to

g((Vx9)Y,Z)=0

for all X € X(M) and Y and Z orthogonal to . Thus the n-parallelism of p in
the sense of Kon is stronger than that of .S in the sense of Kimura-Maeda.

To distinguish these two n-parallelisms, we call the n-parallelism in the sense
of Kon by the name, “strong n-parallelism”.

4. Kenmotsu 3-manifolds with strongly n-parallel S

4.1. We start our discussions with n-Einstein almost contact Riemannian 3-
manifolds with n-parallel Ricci operator.

Express the Ricci operator S of an n-Einstein almost contact Riemannian
3-manifold M as S = al + bn ® £, then we have

(1) (VxS)Y = da(X)Y + db(X)n(¥ )€ + b{(VxmY}e
forall X, Y, Z € X(M).

4.2. Let us assume that M is a Kenmotsu 3-manifold. Then we have
(Vxn)Y =g(Vx€Y) =g(X,Y) —n(X)n(Y)
for all X, Y € X(M). Hence from (4.1),
(42) 9((Vx8)Y, Z) = da(X)g(Y, Z) + db(X)n(Y)n(Z)
+0{g(X,Y) = n(X)n(Y)}n(Z)
for all X, Y, Z € X(M). Next, since

a:%(T+2), b:f%(rJrG)

on Kenmotsu 3-manifolds, we get
1

for all X, Y and Z € X(M) with n(Y) =n(Z) =0.
Now we take a local orthonormal frame field {e1,ez,e3} of M of the form
ea = peq, n(er) =0 and ez = &.
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If we choose X =Y =Z =¢; (i =1,2), then we get dr(e;) =0 fori =1, 2.
Thus S is n-parallel if and only if dr(X) = 0 for any X orthogonal to &.

Proposition 4.1. A Kenmotsu 3-manifold M has n-parallel Ricci operator if
and only if its scalar curvature satisfies dr(X) = 0 for any tangent vector X
orthogonal to &.

Next we assume that M has strongly n-parallel Ricci operator, then we have
1
0=g((VeS)ei e5) = 5dr(€), i=1,2.

This implies that » = —6. Thus we obtain an alternative proof to the following
result due to De and Pathak.

Proposition 4.2 ([8]). A Kenmotsu 3-manifold M has strongly n-parallel Ricci
operator if and only if M is of constant curvature —1.

Summing up our results, we get:

Theorem 4.1. Let M be a Kenmotsu 3-manifolds. Then the following prop-
erties are mutually equivalent:

o The scalar curvature r is constant along the trajectories of &, i.e.,
&r) = 0.

The scalar r is constant.

The scalar curvature is —6.

The holomorphic sectional curvature function H is constant.

The Ricci operator is strongly n-parallel.

M is locally symmetric.

M is of constant curvature —1.

Remark 1. Jun, De and Pathak showed that Kenmotsu manifolds of arbitrary
odd dimension with strongly n-parallel Ricci operator has constant scalar cur-
vature [10, Theorem 5].

In the next section we classify Kenmotsu 3-manifolds with n-parallel Ricci
operator.

5. Kenmotsu 3-manifolds with n-parallel S

5.1. Warped products. We start with the standard examples of Kenmotsu 3-
manifold.

Let (N, h,J) be an oriented Riemannian 2-manifold together with the com-
patible orthogonal complex structure .J. Take a direct product M = E'(¢) x N
of real line and N. We denote m and o the natural projections onto the first
and second factors,

7:M—E! o:M— N,
respectively. On the direct product M, we equip a Riemannian metric g defined
by
g=dt* + f(t)*7*h.
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Here f is a positive function on E!(¢). The resulting Riemannian manifold
(M, g) is denoted by E! x s N and called the warped product with base E! and
fibre N. The function f is called the warping function.

On the warped product M = E! x y N, we define the vector field £ by & = %.
Then the Levi-Civita connection V of M is given by (cf. [15]):

VvV = 5 1 — —v
VeV = (VxY)" = 20X YO F
VX' = Vg = f?/YV,
Ve =0.

Here the superscript v means the vertical lift operation of vector fields from N
to M. Define an endomorphim field ¢ on M by ¢X = {J(0.X)}". Then we
get

Vxé=B(X —n(X)E),
(Vxp)Y = B{g(eX,Y) —n(Y)pX}, B=f/f

Hence M = E! x ¢ N is a normal almost contact Riemannian 3-manifold of type
(0, 8). In particular, E! x ; N is a Kenmotsu manifold if and only if f(t) = ce’
for some positive constant c¢. Take a local orthonormal frame field {€;,é2} of
(N, h) such that é2 = Je;. Then we obtain a local orthonormal frame field
{e1,e2,e3} by

1 1

=V =V
el = —€), ex=—ey =ype;, e3=2~¢.

f f
Then sectional curvatures of M are given by

1 "
K(erNez) = F{H —(f')*}, K(eines)=K(ezhes)= 5
where « is the Gaussian curvature of N. The components p;; = p(e;,e;) of
Ricci tensor field are given by

B K - f// - (f/)2 __2f”
P11 = P22 = _f2 _f _f y P33 = I
t

Now we assume that M is a Kenmotsu manifold, that is, we choose f(t) = ce’,
then we have

K
= =5 —2 = -2
P11 = P22 22t » P33

Thus we have

2K
22t

— 6.

T =
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5.2. The local structure of Kenmotsu manifolds is described as follows.

Lemma 5.1 ([11]). A Kenmotsu 3-manifold M s locally isomorphic to a
warped product I x; N whose base I C El(t) is an open interval, N is a
surface and warping function f(t) = cet, ¢ > 0. The structure vector field is

¢€=0/0t.

Now let M be a Kenmotsu 3-manifold and take a local warped product
representation I X ..t V.
Take a local isothermal coordinates (z,y) on N and represent h as h =
e (dz? + dy?). Then
S —w/QQ —w/QE
a=c oz’ oy’
Thus we have that S is n-parallel if and only if k, = Kk, = 0, that is, & is

constant. Under the constancy of , dr(¢) = 0 holds if and only if xk = 0. In
this case M is of constant curvature —1.

€y =¢€

Theorem 5.1. A Kenmotsu 3-manifold has n-parallel Ricci operator if and
only if it is locally isomorphic to the warped product E' X ..« N, where N is of
constant curvature.

Thus the global warped products
E! X ot S?(k), E! X o H(k)
are Kenmotsu 3-manifolds whose Ricci operator is n-parallel but not strongly

n-parallel.

Remark 2. In [6], Cho and Kimura showed that a Kenmotsu 3-manifold M
satisfies £¢5 = 0 if and only if M is of constant curvature —1. They also
showed that Kenmotsu 3-manifolds whose Ricci operator is parallel along the
characteristic flow (i.e., V¢S = 0) are of constant curvature —1. Recently Cho
classified locally symmetric almost Kenmotsu 3-manifolds [5].

Problem 5.1. (1) Classify almost Kenmotsu 3-manifolds with 7-parallel
Ricci operator.
(2) Classify Kenmotsu 3-manifolds with semi 7-parallel Ricci operator, i.e.,

9(R(X,Y)S)Z,W) =0
for all vector fields X, Y, Z and W orthogonal to &.

6. Cosymplectic 3-manifolds

In this section we study cosymplectic 3-manifolds with n-parallel Ricci op-
erator. On a cosymplectic 3-manifold M, we have

Vo =0, VE=0.

In particular we have V¢£ = 0. Hence on cosymplectic 3-manifolds, integral
curves (trajectories) of £ are geodesics.
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Example 6.1. Let (N,h,J) be an oriented Riemannian 2-manifold with the
compatible complex structure J. On the direct product manifold M = N x E!
of N with the real line E!(¢), we equip the product metric g = 7*h + dt?. Here
m: M — N is the natural projection. Define the endomorphism field ¢ on M
by
SDX = {Jﬁ*X}ha

where h is the horizontal lift operation. Define the vector field £ and the 1-
form n by £ = 8/0t and n = dt. Then the resulting almost contact Riemannain
3-manifold (M, p, &, n, g) is cosymplectic.

The local structure of cosymplectic 3-manifolds is described as follows.

Lemma 6.1 ([4, Lemma 2]). A cosymplectic 3-manifold M is locally isomor-
phic to the Riemannian product N x I whose base N = (N, h) is a Riemannin
2-mnanifold. The standard fibre I is an open interval with coordinate t. The
metric is g = m*h + dt?, where 7 : N x I — N is the natural projection. The
structure vector field is & = 9/0t.

Every cosymplectic 3-manifold is n-Einstein with Ricci operator

T T
S=l1-Lyee
5 277®§

The holomorphic sectional curvature function H is given by H = r/2.

Corollary 6.1. The Riemannian curvature of a cosymplectic 3-manifold is
given by
r
R(X,Y)Z = LI A{(X AY)ENZ.

Using this formula, the covariant derivative of S is computed as
1
(6.1) (VxS)Y = cdr(X)(Y —n(Y)§).
The divergence divS is computed as

1
divs =

§(gradr — n(gradr)f).

This implies the formula
dr(X) = g(gradr, X) — n(gradr)n(X).
Equivalently,
dr = dr — n(gradr)n

From this formula we have £(r) = 0. This implies that divS = gradr/2 and
VeS=0.

Now let us consider cosymplectic 3-manifolds with n-parallel Ricci operator.

If we assume that n(Y) =n(Z) =0, in (6.1), we obtain

1

for all X € X(M).
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Now we take a local orthonormal frame field {e1, e2, e3} of the form ey = pey,
n(er) =0 and e3 = . If we choose X =Y = Z =e¢; in (6.1) for i = 1,2, then
we get dr(e;) = 0 for ¢ = 1, 2. Thus S is n-parallel if and only if dr(X) =0
for any vector field X orthogonal to £. Since we know that dr(§) = 0, S is
n-parallel if and only if S is strongly n-parallel.

Proposition 6.1. Let M be a cosymplectic 3-manifold with Ricci operator S.
Then S is n-parallel if and only if v is constant. In such a case S is strongly
n-parallel.

Since the holomorphic sectional curvature function H is related to r by
H = r/2, the n-parallelism of S is equivalent to the constancy of H.

Corollary 6.2. Let M be a cosymplectic 3-manifold with Ricci operator S.
Then S is n-parallel if and only if M has constant holomorphic sectional cur-
vature.

Let (IV, h) be an oriented Riemannian 2-manifold and M = N xE! the direct
product with product metric. We equip the natural cosymplectic structure on
M. Then the scalar curvature r of M is r = 2x" Here  is the Gaussian
curvature. Hence S is n-parallel if and only if £ is constant.

Thus S?(x) x E' and H?(k) x E! are non-constant curvature cosymplectic
manifolds with n-parallel Ricci operator.

Theorem 6.1. Let M be a cosymplectic 3-manifold. Then the following prop-
erties are mutually equivalent:

The scalar curvature is constant.

The holomorphic sectional curvature function H is constant.
The Ricci operator is n-parallel.

The Ricci operator is strongly n-parallel.

M is locally symmetric.

7. Sasakian 3-manifolds

For a Sasakian 3-manifold M, we have
1 1
S=al+n®E a= 5(7"—2), b= 5(6—7’).
The holomorphic sectional curvature is H = r/2 — 2. Hence we get

1

divS = §(gradr —dr(£)%).

This formula implies dr = dr — dr(€)n. Hence we have dr(§) = 0.
Moreover we have

J((Vx8)Y,2) = Zdr(X)g(¥, 2)

forall X € X(M) and Y, Z orthogonal to . The Ricci operator S on a Sasakian
3-manifold M is n-parallel if and only if dr(X) = 0 for all X orthogonal to &.
Since £(r) = 0 holds on every Sasakian 3-manifold, we have the following result.
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Proposition 7.1. The following properties are mutually equivalent for Sasa-
kian 3-manifolds.

The scalar curvature r is constant.

The holomorphic sectional curvature H is constant.
The Ricci operator is n-parallel.

The Ricci operator is strongly n-parallel.

Thus 3-dimensional Sasakian space forms are examples of Sasakian 3-manifolds
with strongly n-parallel Ricci operator. As is well known Sasakian 3-manifold
is locally symmetric if and only if it is of constant curvature 1.

Among the three classes (cosymplectic, Kenmotsu, Sasakian), only for the
class of Kenmotsu 3-manifolds, n-parallelism of S is weaker than the strong
n-parallelism of S.

Remark 3. Sasakian manifolds Nil; = R3(—3) and SLyR, cosymplectic 3-
manifolds S?(x) x E! and H?(k) x E! are model spaces of Thurston geometries.
Moreover these space are included in the 2-parameter family of homogeneous
Riemannian spaces referred as to the Bianchi-Cartan- Vranceanu family, see [1].
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