DOI QR코드

DOI QR Code

Robust Object Tracking System Based on Face Detection

얼굴검출에 기반한 강인한 객체 추적 시스템

  • 곽민석 (한국디지털미디어고등학교)
  • Received : 2016.07.01
  • Accepted : 2016.08.03
  • Published : 2017.01.31

Abstract

Embedded devices with the development of modern computer technology also began equipped with a variety of functions. In this study, to provide a method of tracking efficient face with a small instrument of resources, such as built-in equipment that uses an image sensor in recent years has been actively carried out. It uses a face detection method using the features of the MB-LBP in order to obtain an accurate face, specify the region (Region of Interest) around the face when the face detection for the face object tracking in the next video did. And in the video can not be detected faces, to track objects using the CAM-Shift key is a conventional object tracking method, which make it possible to retain the information without loss of object information. In this study, through the comparison with the previous studies, it was confirmed the precision and high-speed performance of the object tracking system.

최근 컴퓨터 기술의 발전과 함께 임베디드 기기 또한 다양한 기능을 갖추기 시작했다. 본 연구에서는 최근 활발하게 진행되고 있는 영상센서를 사용한 임베디드 기기 등 자원이 적은 기기에서 효율적인 얼굴 추적 방식을 제안한다. 정확한 얼굴을 얻기 위하여 MB-LBP 특징을 사용한 얼굴 검출 방식을 사용했으며, 다음 영상에서 얼굴 객체 추적을 위하여 얼굴 검출시 얼굴 주변 영역(Region of Interest)을 지정하였다. 그리고 얼굴을 검출을 못하는 영상에서는 기존의 객체 추적 방식인 CAM-Shift를 사용해 객체를 추적해 객체 정보의 손실 없이 정보를 유지할 수 있도록 하였다. 본 연구는 기존 연구와의 비교를 통하여 객체 추적 시스템의 정확성과 빠른 성능을 확인하였다.

Keywords

References

  1. Ming-Hsuan Yang, David J. Kriegman, and Narendra Ahuja, "Detecting faces in images: A survey," IEEE Trans. PatternAnalysis and Machine Intelligence, Vol.24, No.1, pp. 34-58, 2002. https://doi.org/10.1109/34.982883
  2. Paul Viola, and Michael J. Jones, "Robustreal-time face detection," International Journal of Computer Vision, Vol.57, No.2, pp.137-154, 2004. https://doi.org/10.1023/B:VISI.0000013087.49260.fb
  3. D. Comaniciu, V. Ramesh, and P. Andmeer, "Kernel-based object tracking," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.25, Iss.5, pp.564-577, May., 2003. https://doi.org/10.1109/TPAMI.2003.1195991
  4. D. Comaniciu, V. Ramesh, and P. Andmeer, "Real-Time Tracking of Non-Rigid Objects using Mean Shift," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.142-149, Jun., 2000.
  5. Raul Viola and M. J. Jones, "Robust Real-Time Face Detection," International Journal of Computer Visioin, Vol.57, Iss.2, pp.137-154, May., 2004. https://doi.org/10.1023/B:VISI.0000013087.49260.fb
  6. Y. Wu, J. Lim, and M. H. Yang, "Online Object Tracking: A Benchmark," The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.2411-2418, 2013.
  7. T. Ojala, M. Pietikainen, and D. Harwood, "A comparative study of texture measures with classification based on featured distributions," Pattern Recognition, Vol.29, No.1, pp.51-59, 1995. https://doi.org/10.1016/0031-3203(95)00067-4
  8. D. P. Huttenlocher, J. J. Noh, and W. J. Rucklidge, "Tracking nonrigid objects in complex scenes," in IEEE International Conference on Computer Vision (ICCV), pp.93-101, 1993.
  9. C. Stauffer and E. Grimson, "Learning pattern of activity using real-time tracking," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.22, No.8, pp.747-757, 2000. https://doi.org/10.1109/34.868677
  10. A. Yilmaz, O. Javed, and M. Shah, "Object tracking: a survey," ACM Computing Surveys, Vol.38, No.4, pp.1-45, 2006. https://doi.org/10.1145/1132952.1132953
  11. T. Ojala, M. Pietikainen, and D. Harwood, "A Comparative Study of Texture Measures with Classification Based on Feature Distributions," Pattern Recognition, Vol.29, No.1, pp.51-59, 1996. https://doi.org/10.1016/0031-3203(95)00067-4
  12. T. Ahonen, A. Hadid, and M. Pietikinen, "Face description with local binary patterns: Application to face recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.28, Iss.12, Dec., 2006.
  13. S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Z. Li, "Learning Multi-scale Block Local Binary Patterns for Face Recognition," in International Conference on Biometrics, Springer Berlin Heidelberg, pp.828-837, 2007.