DOI QR코드

DOI QR Code

Benchmarking of Zinc Coatings for Corrosion Protection: A Detailed Characterization of Corrosion and Electrochemical Properties of Zinc Coatings

  • Wijesinghe, Sudesh L (Diagnostics Unit, Precision Measurements Group, Singapore Institute of Manufacturing Technology) ;
  • Zixi, Tan (Diagnostics Unit, Precision Measurements Group, Singapore Institute of Manufacturing Technology)
  • Received : 2016.09.20
  • Accepted : 2016.12.06
  • Published : 2017.02.28

Abstract

Due to various types of Zn coatings for many decades for various applications, it is imperative to study and compare their corrosion resistance properties of some of these. Here, we introduce a systematic methodology for evaluation and validation of corrosion protection properties of metallic coatings. According to this methodology, samples are were exposed in an advanced cyclic corrosion test chamber according to ISO 14993, and removed at the end of each withdrawal for respective corrosion and electrochemical characterization to evaluate both barrier and galvanic protection properties. Corrosion protection properties of coatings were evaluated by visual examination according to ISO 10289, mass loss and subsequent corrosion rate measurements, electrochemical properties, and advanced electrochemical scanning techniques. In this study, corrosion protection properties of a commercial zinc rich coating (ZRC) on AISI 1020 mild steel substrates were evaluated and benchmarked against hot dip galvanized (HDG). Results were correlated, and corrosion protection capabilities of the two coatings were compared. The zinc rich coating performed better than hot dip galvanized coating in terms of overall corrosion protection properties, according to the exposure and experimental conditions used in this study. It proved to be a suitable candidate to replace hot dip galvanized coatings for desired applications.

Keywords

References

  1. Denny A. Jones, Principles and Prevention of Corrosion, 2nd ed., Perarson Education South Asia Pte Ltd., Singapore (1996).
  2. V. Barranco, S. Feliu Jr., and S. Feliu, Corros. Sci., 46, 2203 (2004). https://doi.org/10.1016/j.corsci.2003.09.032
  3. S. M. A. Shibli, A. C. Jayalekshmi, and R. Remya, Surf. Coat. Tech., 201, 7560 (2007). https://doi.org/10.1016/j.surfcoat.2007.02.028
  4. V. Barranco, S. Feliu Jr., and S. Feliu, Corros. Sci., 46, 2221 (2004). https://doi.org/10.1016/j.corsci.2003.09.033
  5. S. E. Faidi, J. D. Scantlebury, P. Bullivant, N. T. Whittler, and R. Savin, Corros. Sci., 35, 1319 (1993). https://doi.org/10.1016/0010-938X(93)90354-J
  6. S. Shreepathia, P. Bajajb, and B. P. Mallika, Electrochim. Acta, 55, 5129 (2010). https://doi.org/10.1016/j.electacta.2010.04.018
  7. M. Mouanga and P. Bercot, Corros. Sci., 52, 3993 (2010). https://doi.org/10.1016/j.corsci.2010.08.018
  8. A. Meroufel and S. Touzain, Prog. Org. Coat., 59, 197 (2007). https://doi.org/10.1016/j.porgcoat.2006.09.005
  9. C. Cachet, F. Ganne, S. Joiret, G. Maurin, J. Petitjean, V. Vivier, and R. Wiart, Electrochim. Acta, 47, 3409 (2002). https://doi.org/10.1016/S0013-4686(02)00277-3
  10. H. Marchebois, C. Savall, J. Bernard, and S. Touzain, Electrochim. Acta, 49, 2945 (2004). https://doi.org/10.1016/j.electacta.2004.01.053
  11. S. M. A. Shibli, and R. Manu, Appl. Surf. Sci., 252, 3058 (2006). https://doi.org/10.1016/j.apsusc.2005.05.012
  12. E. Diler, S. Rioual, B. Lescop, D. Thierry, and B. Rouvellou, Corros. Sci., 65, 178 (2012). https://doi.org/10.1016/j.corsci.2012.08.014
  13. J. Kasperek, D. Verchere, D. Jacquet, and N. Phillips, Mater. Chem. Phys., 56, 205 (1998). https://doi.org/10.1016/S0254-0584(98)00167-9
  14. D. Persson, D. Thierry, and N. LeBozec, Corros. Sci., 53, 720 (2011). https://doi.org/10.1016/j.corsci.2010.11.004
  15. D. J. Penney, J. H. Sullivan, and D. A. Worsley, Corros. Sci., 49, 1321 (2007). https://doi.org/10.1016/j.corsci.2006.07.006
  16. M. Yan, V. J. Gelling, B. R. Hinderliter, D. Battocchi, D. E. Tallmanand, and G. P. Bierwagen, Corros. Sci., 52, 2636 (2010). https://doi.org/10.1016/j.corsci.2010.04.012
  17. A. C. Bastos, M. L. Zheludkevich, and M. G. S. Ferreira, Prog. Org. Coat., 63, 282 (2008). https://doi.org/10.1016/j.porgcoat.2008.01.013
  18. G. A. El-Mahdy, A. Nishikata, and T. Tsuru, Corros. Sci., 42, 183 (2000). https://doi.org/10.1016/S0010-938X(99)00057-8
  19. R. M. Souto, L. Fernandez-Merida, S. Gonzalez, and D. J. Scantlebury, Corros. Sci., 48, 1182 (2006). https://doi.org/10.1016/j.corsci.2005.05.006
  20. I. M. Zin, S. B. Lyon, and A. Hussain, Prog. Org. Coat., 52, 126 (2005). https://doi.org/10.1016/j.porgcoat.2004.10.006

Cited by

  1. Analysis of Galvanized Steel Sheets Fabrication in Cold Rolling Shop and Identification of Local Impacts Contributing to Corrosion of Metal-Products vol.316, pp.None, 2017, https://doi.org/10.4028/www.scientific.net/ssp.316.873