DOI QR코드

DOI QR Code

Use of Local Electrochemical Methods (SECM, EC-STM) and AFM to Differentiate Microstructural Effects (EBSD) on Very Pure Copper

  • Martinez-Lombardia, Esther (Vrije Universiteit Brussel, Research Group Electrochemical and Surface Engineering) ;
  • Lapeire, Linsey (Ghent University, Department of Materials Science and Engineering) ;
  • Maurice, Vincent (CNRS - Chimie ParisTech (UMR 8247), Institut de Recherche de Chimie Paris) ;
  • De Graeve, Iris (Vrije Universiteit Brussel, Research Group Electrochemical and Surface Engineering) ;
  • Klein, Lorena (CNRS - Chimie ParisTech (UMR 8247), Institut de Recherche de Chimie Paris) ;
  • Marcus, Philippe (CNRS - Chimie ParisTech (UMR 8247), Institut de Recherche de Chimie Paris) ;
  • Verbeken, Kim (Ghent University, Department of Materials Science and Engineering) ;
  • Kestens, Leo (Ghent University, Department of Materials Science and Engineering) ;
  • Gonzalez-Garcia, Yaiza (Delft University of Technology,Department of Materials Science and Engineering) ;
  • Mol, Arjan (Delft University of Technology,Department of Materials Science and Engineering) ;
  • Terryn, Herman (Vrije Universiteit Brussel, Research Group Electrochemical and Surface Engineering)
  • Received : 2016.09.21
  • Accepted : 2017.01.04
  • Published : 2017.02.28

Abstract

When aiming for an increased and more sustainable use of metals a thorough knowledge of the corrosion phenomenon as function of the local metal microstructure is of crucial importance. In this work, we summarize the information presented in our previous publications[1-3] and present an overview of the different local (electrochemical) techniques that have been proven to be effective in studying the relation between different microstructural variables and their different electrochemical behavior. Atomic force microscopy (AFM)[1], scanning electrochemical microscopy (SECM)[2], and electrochemical scanning tunneling microscopy (EC-STM)[3] were used in combination with electron backscatter diffraction (EBSD). Consequently, correlations could be identified between the grain orientation and grain boundary characteristics, on the one hand, and the electrochemical behavior on the other hand. The grain orientation itself has an influence on the corrosion, and the orientation of the neighboring grains also seems to play a decisive role in the dissolution rate. With respect to intergranular corrosion, only coherent twin boundaries seem to be resistant.

Keywords

References

  1. L. Lapeire, E. Martinez Lombardia, K. Verbeken, I. De Graeve, L. Kestens, and H. Terryn, Corros. Sci., 67, 179 (2012).
  2. E. M. -Lombardia, Y. G. -Garcia, L. Lapeire, I. De Graeve, K. Verbeken, L. Kestens, J. Mol, and H. Terryn, , Electrochim. Acta, 116, 89 (2014). https://doi.org/10.1016/j.electacta.2013.11.048
  3. E. M.-Lombardia, L. Lapeire, V. Maurice, I. D. Graeve, K. Verbeken, L. Klein, L. Kestens, P. Marcus, and H. Terryn, Electrochem. Commun., 41, 1 (2014). https://doi.org/10.1016/j.elecom.2014.01.007
  4. A. Alfantazi, T. Ahmed, and D. Tromans, Mater. Design, 30, 2425 (2009). https://doi.org/10.1016/j.matdes.2008.10.015
  5. H.-B. Lu, Y. Li, and F.-H.Wang, Electrochim. Acta, 52, 474 (2006). https://doi.org/10.1016/j.electacta.2006.05.047
  6. E. Ghali, W. Dietzel, and K.-U. Kainer, J.Mater. Eng. Perform., 13, 7 (2004). https://doi.org/10.1361/10599490417533
  7. C. Van den Bos, H. Schnitger, X. Zhang, A. Hovestad, H. Terryn, and J. De Wit, Corros. Sci., 48, 1483 (2006). https://doi.org/10.1016/j.corsci.2005.05.028
  8. F. Andreatta, H. Terryn, and J. de Wit, Corros. Sci., 45, 1733 (2003). https://doi.org/10.1016/S0010-938X(03)00004-0
  9. C. Caicedo-Martinez, E. Koroleva, G. Thompson, P. Skeldon, K. Shimizu, G. Hoellrigl, C. Campbell, and E. McAlpine, Corros. Sci., 44, 2611 (2002). https://doi.org/10.1016/S0010-938X(02)00041-0
  10. C. Yao, Z. Wang, S. L. Tay, T. Zhu, and W. Gao, J. Alloy. Compd., 602, 101 (2014). https://doi.org/10.1016/j.jallcom.2014.03.025
  11. A. Amirudin and S. Chawla, J. Natl. Sci. Found. Sri, 6, 27 (1978).
  12. V. Maurice, L. Klein, H.-H. Strehblow, and P. Marcus, J. Phys. Chem. C, 111, 16351 (2007). https://doi.org/10.1021/jp0742517
  13. A. Seyeux, V. Maurice, L. Klein, and P. Marcus, J. Solid State Electr., 9, 337 (2005). https://doi.org/10.1007/s10008-004-0627-5
  14. J. Kunze, V. Maurice, L. H. Klein, H.-H. Strehblow, and P. Marcus, Electrochim. Acta, 48, 1157 (2003). https://doi.org/10.1016/S0013-4686(02)00826-5
  15. M. Vogt, A. Lachenwitzer, O. Magnussen, and R. Behm, Surf. Sci., 399, 49 (1998). https://doi.org/10.1016/S0039-6028(97)00811-X
  16. G. Zhou and J. C. Yang, Appl. Surf. Sci., 222, 357 (2004). https://doi.org/10.1016/j.apsusc.2003.09.008
  17. F. Wiame, V. Maurice, and P. Marcus, Surf. Sci., 601, 1193 (2007). https://doi.org/10.1016/j.susc.2006.12.028
  18. M. Schweinsberg, A. Michaelis, and J. Schultze, Electrochim. Acta, 42, 3303 (1997). https://doi.org/10.1016/S0013-4686(97)00181-3
  19. B. Davepon, J. Schultze, U. König, and C. Rosenkranz, Surf. Coat. Technol., 169, 85 (2003).
  20. J. R. Davis, Copper and copper alloys, p. ?, ASM international, Materials Park, OH (2001).
  21. S. Kudelka, A. Michaelis, and J. Schultze, Electrochim. Acta, 41, 863 (1996). https://doi.org/10.1016/0013-4686(95)00375-4
  22. S. Kudelka and J. Schultze, Electrochim. Acta, 42, 2817 (18).
  23. Y. Huang and P. Prangnell, Acta Mater., 56, 1619 (7) (2008). https://doi.org/10.1016/j.actamat.2007.12.017
  24. T. Konkova, S. Mironov, A. Korznikov, and S. Semiatin, Acta Mater., 58, 5262 (16) (2010). https://doi.org/10.1016/j.actamat.2010.05.056
  25. T. P. Moat, H. Yang, F.-R. F. Fan, and A. J. Bard, J. Electrochem. Soc., 139, 3158 (11) (1992). https://doi.org/10.1149/1.2069049
  26. Z. Guoding, X. Qunjie, B. Loo, and A. T. Nonferr. Metal. Soc., 8, 308 (1998).
  27. T. P. Moat, H. Yang, F.-R. F. Fan, and A. J. Bard, J. Electrochem. Soc., 139, 3158 (1992). https://doi.org/10.1149/1.2069049
  28. J. Kunze, V. Maurice, L. H. Klein, H.-H. Strehblow, and P. Marcus, Corros. Sci., 46, 245 (2004). https://doi.org/10.1016/S0010-938X(03)00140-9
  29. S. Kim, U. Erb, K. Aust, and G. Palumbo, Scr. Mater., 44, 835 (2001). https://doi.org/10.1016/S1359-6462(00)00682-5
  30. V. Randle, Scr. Mater., 54, 1011 (2006). https://doi.org/10.1016/j.scriptamat.2005.11.050
  31. V. Gertsman and S. M. Bruemmer, Acta Mater., 49, 1589 (2001). https://doi.org/10.1016/S1359-6454(01)00064-7
  32. M. Kumar, A. J. Schwartz, and W. E. King, Acta Mater., 50, 2599 (2002). https://doi.org/10.1016/S1359-6454(02)00090-3

Cited by

  1. Non-amine계 부식방지제를 포함하는 자동차용 부동액의 구리 부식성 평가 vol.21, pp.2, 2017, https://doi.org/10.5762/kais.2020.21.2.619