References
- E. Zrenner, "Fighting blindness with microelectronics.," Science translational medicine, vol. 5, no. 210, p. 210ps16, Mar. 2013. https://doi.org/10.1126/scitranslmed.3007399
- J. D. Weiland, and M. S. Humayun, "Retinal prosthesis," IEEE Transactions on Biomedical Engineering, vol. 61, no. 5, pp. 1412-1424, Aug. 2014. https://doi.org/10.1109/TBME.2014.2314733
- Y. H. L. Luo, and L. Da Cruz, "A review and update on the current status of retinal prostheses (bionic eye)," British Medical Bulletin, vol. 109, no. 1, pp. 31-44, Feb. 2014. https://doi.org/10.1093/bmb/ldu002
- M. S. Humayun, et al., "Interim results from the international trial of second sight's visual prosthesis," Ophthalmology, vol. 119, no. 4, pp. 779-788, Apr. 2012. https://doi.org/10.1016/j.ophtha.2011.09.028
-
D. D. Zhou, et al., "The Argus
$^{(R)}$ II retinal prosthesis system: An overview," Electronic Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2013, Jul. 2013. - E. Zrenner, et al., "Subretinal electronic chips allow blind patients to read letters and combine them to words.," Proceedings. Biological sciences /The Royal Society, vol. 278, no. 1711, pp. 1489-97, Nov. 2011. https://doi.org/10.1098/rspb.2010.1747
- K. Stingl, et al., "Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS.," Proceedings. Biological sciences / The Royal Society, vol. 280, no. 1757, p. 20130077, Feb. 2013. https://doi.org/10.1098/rspb.2013.0077
- A. Stett, et al., "Electrical multisite stimulation of the isolated chicken retina," Vision Research, vol. 40, no. 13, pp. 1785-1795, Jun. 2000. https://doi.org/10.1016/S0042-6989(00)00005-5
- R. Wilke, et al., "Spatial resolution and perception of patterns mediated by a subretinal 16-electrode array in patients blinded by hereditary retinal dystrophies," Investigative Ophthalmology and Visual Science, vol. 52, no. 8, pp. 5995-6003, Jul. 2011. https://doi.org/10.1167/iovs.10-6946
- P. M. Figueiredo, and J. C. Vital, "Kickback noise reduction techniques for CMOS latched comparators," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 541-545, 2006. https://doi.org/10.1109/TCSII.2006.875308
- M. Bigas, et al., "Review of CMOS image sensors," Microelectronics Journal, vol. 37, no. 5, pp. 433-451, 2006. https://doi.org/10.1016/j.mejo.2005.07.002
- M. Ghovanloo, and K. Najafi, "A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators," IEEE Transactions on Biomedical Engineering, vol. 52, no. 1, pp. 97-105, 2005. https://doi.org/10.1109/TBME.2004.839797
- P. Jespers, THE GM/ID METHODOLOGY, A SIZING TOOL FOR LOW-VOLTAGE ANALOG CMOS CIRCUITS, 1st ed. Boston, MA, 2010.
- K. Iniewski, VLSI Circuits for Biomedical Applications. 2007.
- J. Farrell, et al., "Resolution and Light Sensitivity Traedoff with Pixel Size," p. 60690N-60690N-8, 2006.
- T. Lule, et al., "Sensitivity of CMOS based imagers and scaling perspectives," IEEE Transactions on Electron Devices, vol. 47, no. 11, pp. 2110-2122, 2000. https://doi.org/10.1109/16.877173
Cited by
- Fully Integrated Light-Sensing Stimulator Design for Subretinal Implants vol.19, pp.3, 2019, https://doi.org/10.3390/s19030536