DOI QR코드

DOI QR Code

고출력 무전극램프의 가스압 및 아말감종류에 따른 특성분석 및 최적화에 관한 연구

Study of the Characteristic and Optimization of Induction Lamp according to Gas Pressure and Amalgam Type

  • Chung, Young-Il (Department of Information and TeleCommunication Engineering, Wonkwang University) ;
  • Jung, Dae-Chul (Department of Information and TeleCommunication Engineering, Wonkwang University) ;
  • Kim, Yong-Kab (Department of Information and TeleCommunication Engineering, Wonkwang University) ;
  • Park, Dae-Hee (Department of Information and TeleCommunication Engineering, Wonkwang University)
  • 투고 : 2017.01.12
  • 심사 : 2017.01.25
  • 발행 : 2017.02.28

초록

현재는 도로조명의 경우 기존 메탈할라이드 램프 400W이하로 설치되어 있어 에너지절약형 조명으로 대체가 이루어지고 있으며, 무전극 램프는 터널조명과 고천정조명 적용분야를 타겟으로 더욱 활발한 교체가 이루어질 것으로 예상된다. 따라서 추가적으로 고효율, 고출력 무전극 램프 시스템 개발이 필요한 상황이다. 본 연구에서는 고출력 무전극 램프의 설계 및 제작을 진행하여 가스종류 및 가스압에 따른 비교 분석, 아말감 종류에 따른 특성 분석 등을 통한 무전극 램프 최적화를 진행하였다. 현재 고출력 무전극 램프 방전관 및 페라이트코어에 맞는 가스압 300~350[mmHg] 사이로 최적화 하였다. 인듐(In) 아말감을 적용한 무전극 램프로 점등회로 매칭을 완료하여 250W(정격${\pm}10%$)로 정격소비전력으로 최적화를 완료하였다.

Currently, road lightings are installed with less than 400W of existing metal halide lamps. These road lightings are being replaced by energy-saving lightings. Induction lamps are expected to be more actively replaced with targets for tunnel lighting and high ceiling lighting. Therefore, it is necessary to develop high efficiency, high power induction lamps system. In this study, the gas type & pressure, amalgam type were designed for the high power of the induction lamps. And induction lamp system was optimized through electrical, optical characteristics analysis. It is optimized to the gas pressure 300~350 [mmHg] for the discharge tube of high power induction lamp and ferrite core. The driving circuit matching was completed with a induction lamp using indium amalgam. The rated power consumption of the induction lamp was optimized with 250 W (rated ${\pm}10%$)

키워드

참고문헌

  1. Hyun-seob Cho, "The study of induction heating apparatus with high efficiency", Journal of korea institute of information electronics and communication technology, Vol. 9, No. 2, pp185-189, Apr. 2016 https://doi.org/10.17661/jkiiect.2016.9.2.185
  2. Ui-Hyo Jeong, Jae-Phil Hyung, Seong-Yong Lim, Hong-Woo Lim, Joong-Soon Jang, "High Temperature Reliability Study of Low Frequency In-door Electrodeless Lamp",International Journal of Reliability and Applications , Vol.14 No.3, pp203-207, Sep. 2014
  3. Jae-hyun Kwon, Jun-myung Lee, "Thermal characteristics of the design on residential 13.5W COB LED down light heat sink", Journal of korea institute of information electronics and communication technology, Vol. 7, No. 1, pp20-25, Mar. 2014 https://doi.org/10.17661/jkiiect.2014.7.1.020
  4. Wharmby, D. O., "Electrodeless lamps for lighting: a review", Science Measurement and Technology, IEE Proceedings A, Vol.140, pp.465-473, 1993 https://doi.org/10.1049/ip-a-3.1993.0071
  5. V. A Godyak, K. Ohata., "Radio Frequency Light Sources", Industry Applications Conference, Conference Record of the 2002 IEEE, Vol.5, pp.3281-3288, 2000
  6. Oleg Popov, Jakob Maya, "Characteristics of electrodeless ferrite-free fluorescent lamp operated at frequencies of 1-15 MHz", Plasma Sources Sci. Technol. 9, 227-237, 2000 https://doi.org/10.1088/0963-0252/9/2/317
  7. Yunoue. N, Harada. K, Ishihara. T, "A self-excited electronic ballast for electrodeless fluorescent lamps operated at l0MHz", IEEE APEC, pp. 2019-2024, Mar. 2002
  8. X. H. Cao J. "Design Orientated Model and Application of Electronic Ballasts for Two Toroidal Ferrite Coupled Electrodeless lamps", IEEE APEC, pp. 1764-1769, 2005
  9. S. H. Chen, S. C. Chang, I. N. Lin "The influence of grain boundary internal stress on permeability: temperature curve for Mn-Zn ferrites", Journal of Magnetism and Magnetic Materials Vol.209, Issues 1-3, Pages 193-196, February 2000 https://doi.org/10.1016/S0304-8853(99)00685-X
  10. Eugen Statnic, Valentin Tanach, "Investigation of the electrical discharge parameters in electrodeless inductive lamps with a re-entrant coupler and magnetic core", Plasma Sources Sci. Technol. 15, pp 465-473, 2006 https://doi.org/10.1088/0963-0252/15/3/023
  11. Motoichi kawaguchi, "Impedance of Electrodeless RF Spherical Light Source with Plasma Uniformity", J.Illum. Engng. Inst. Jpn. Vol. 85, No.2, pp 113-119 2001 https://doi.org/10.2150/jieij1980.85.2_113
  12. Serres, A.W.,Taelman, W., "Amalgams and compact fluorescent lamps" Industry Applications Society Annual Meeting, Conference Record of the 1993 IEEE, 1993, pp.2296-2304, 1993
  13. Richard Speer, Philip Moskowitz, Jeff Holt "Transient State Mercury Transport During the Run-Up Phase of Inductively Coupled Fluorescent Lamps", The 11th international Symposium on the science & technology of light source, pp.585-589, 2007
  14. Ron van Os, David Chazen., "Amalgam system for electrodeless discharge lamp" US Patent 5598069 Issued on January 28, 1997
  15. hyun il kim, "A Study on the Characteristics analysis and the Standardization of Fluorescent Induction Lamps", dongguk university doctorate thesis, 2007

피인용 문헌

  1. A Study on Thermal Characteristics of Carbon-Organic Surface Heating Element with Electrodeless Lamp of a Freezer vol.19, pp.1, 2020, https://doi.org/10.14775/ksmpe.2020.19.01.001