DOI QR코드

DOI QR Code

ISR 임무를 위한 SAR 위성의 군집궤도 배치형상 설계

Design of SAR Satellite Constellation Configuration for ISR Mission

  • Kim, Hongrae (Department of Aerospace & Mechanical Engineering, Graduate School, Korea Aerospace University) ;
  • Song, Sua (Department of Aerospace & Mechanical Engineering, Graduate School, Korea Aerospace University) ;
  • Chang, Young-Keun (Department of Aerospace & Mechanical Engineering, Graduate School, Korea Aerospace University)
  • 투고 : 2016.09.28
  • 심사 : 2016.12.29
  • 발행 : 2017.01.01

초록

ISR(Intelligence, Surveillance and Reconnaissance) 임무를 위한 관측위성의 경우 임무운용개념이 요구되는 동시에 특정 관심영역을 주기적으로 탐지 가능한지에 대한 임무 효용성 분석이 필요하다. 이를 위해서는 군집궤도 형상에 대한 최적설계가 수행되어야 한다. 본 논문에서는 위성군집 형성방법으로 Walker-Delta 방식을 적용하여 특정 관심영역을 탐지하기 위한 군집형상에 대한 분석을 수행하였다. 임무수행의 효용성을 평가하기 위해 재방문주기 성능을 핵심 요구조건으로 선정하였다. 본 연구에서는 4기 SAR(Synthetic Aperture Radar) 위성군집을 적용한 임무분석 과정을 보여주고, 요구조건을 만족시키는 궤도배치 형상결과를 제시하였다. 군집궤도의 성능지수 분석은 개발된 분석 알고리즘을 기반으로 수행하였으며, ISR 임무를 위한 군집궤도 형상은 한 궤도면에 한 기의 위성이 배치되는 4개 궤도면의 형상이 적합한 것으로 분석되었다.

For the Earth observation satellite for ISR mission, a satellite constellation can be utilized to observe a specific area periodically and ultimately increase the effectiveness of the mission. The Walker-Delta method was applied to design constellation orbits with four satellites, which could detect abnormal activities in AoI(Area of Interest). To evaluate the effectiveness of the mission, a revisiting time was selected as a key requirement. This paper presents the mission analysis process for four SAR satellites constellation as well as the result of constellation configuration design to meet the requirements. Figure of Merits analysis was performed based on algorithm developed. Finally, it was confirmed that the constellation orbit with four different orbital planes is likely to be appropriate for ISR mission.

키워드

참고문헌

  1. Haedong, Kim and Hyochoong Bang, "Optimization of Tactical Satellite Constellations Using Genetic Algorithms", KSAS 08-2707, pp. 938-941, 2008.
  2. L. M. Sauter, "Satellite Constellation Design for Mid-Course Ballistic Missile Intercept", Massachusetts Institute of Technology, pp125-160, 2004.
  3. R. W. Whittecar and M. P. Ferringer, "Global Coverage Constellation Design Exploration Using Evolutionary Algorithm" AIAA Astrodynamics Specialist Conference, Paper No. 2014-4159, pp. 1-20, 2014.
  4. J. G. Walker, "Some Circular Orbit Patterns Providing Continuous Whole Earth Coverage", Journal of The British Interplanetary Society, Vol. 24, pp. 369-384, 1971.
  5. Okchul Jung, Hyochoong Bang, M. P. Ferringer and D. B. Spencer, "Satellite Constellation Design Tradeoffs Using Multiple-Objective Evolutionary Computation", Journal of Spacecraft and Rockets, Vol. 43, pp. 1404-1411, 2006. https://doi.org/10.2514/1.18788
  6. Stefania Cornara, W. B. Theresa and B. M. Miguel, "Satellite Constellation Mission Analysis and Design", Acta Astronautica, Vol. 48. No. 5-12, pp. 681-691, 2001. https://doi.org/10.1016/S0094-5765(01)00016-9
  7. J. E. Draim, A common-period four-satellite continuous global coverage constellation", Journal of Guidance, Control, and Dynamics, Vol. 10. No. 5, pp. 492-499, 1987. https://doi.org/10.2514/3.20244
  8. Hongrae Kim and Young-Keun Chang, "Mission scheduling optimization of SAR satellite constellation for minimizing system response time", Aerospace Science and Technology(AST), Vol. 40, pp. 17-32, 2015. https://doi.org/10.1016/j.ast.2014.10.006
  9. B. Y. Youn, Kwangjea. Lee, Younsu Kim and Yongseong Kim, "The development of earth observation SAR satellite trends", Industrial and Technological Trends in Aerospace, Vol. 4 No. 2, pp. 40-48, 2006.
  10. Hongrae Kim and Young-Keun Chang, "Algorithm Development for System Response Time Analysis of Earth Observation Satellites", KSAS, Vol. 11, pp. 585-590, 2014.