DOI QR코드

DOI QR Code

양방향 경로 설정 및 루프 방지를 통한 개선된 AntHocNet

Improved AntHocNet with Bidirectional Path Setup and Loop Avoidance

  • 투고 : 2016.09.20
  • 심사 : 2016.12.20
  • 발행 : 2017.01.31

초록

MANET (Mobile Ad hoc Network)에서 라우팅은 네트워크 토폴로지의 동적인 변화에 큰 영향을 받는다. AntHocNet은 집단 개미가 최적 경로를 통해 먹이를 찾아가는 원리를 모방한 집단생태 특성 기반 MANET 라우팅 프로토콜이다. 하지만, AntHocNet은 다른 MANET 라우팅 프로토콜과 달리 단방향 경로만을 지원하여 양방향 통신이 요구되는 다양한 응용 환경에서 사용하기에 많은 제약이 따른다. 또한, AntHocNet은 다중 경로를 통한 확률적 라우팅으로 인해 루핑 문제 (looping problems)를 빈번히 발생시킨다. 본 논문에서는 AntHocNet에서 양방향 경로 수립을 위한 향상된 경로 수립 방안을 제안한다. 또한, 다양한 시나리오별 루핑 문제의 발생 원인을 분석하고 루프 방지를 위한 해결 방안을 제시한다. NS-2 시뮬레이션을 통해 기존 AntHocNet과의 성능을 비교하였으며, 제안 방안이 라우팅 오버헤드, 종단간 지연 시간, 패킷 전달률 측면에서 기존 방안에 비해 우수한 성능을 보임을 확인하였다.

Routing in mobile ad hoc networks (MANETs) is highly challenging because of the dynamic nature of network topology. AntHocNet is a bio-inspired routing protocol for MANETs that mimics the foraging behavior of ants. However, unlike many other MANET routing protocols, the paths constructed in AntHocNet are unidirectional, which requires a separate path setup if a route in the reverse direction is also required. Because most communication sessions are bidirectional, this unidirectional path setup approach is often inefficient. Moreover, AntHocNet suffers from looping problems because of its property of multiple paths and stochastic data routing. In this paper, we propose a modified path setup procedure that constructs bidirectional paths. We also propose solutions to some of the looping problems in AntHocNet. Simulation results show that performance is significantly enhanced in terms of overhead, end-to-end delay, and delivery ratio when loops are prevented. Performance is further improved, in terms of overhead, when bidirectional paths setup is employed.

키워드

참고문헌

  1. A. Boukerche, B. Turgut, N. Aydin, M. Z. Ahmad, L. Boloni, and D. Turgut, "Routing protocols in ad hoc networks: A survey," Comput. Netw., vol. 55, pp. 3032-3080, 2011. https://doi.org/10.1016/j.comnet.2011.05.010
  2. Z. Chenyu and D. C. Sicker, "A survey on biologically inspired algorithms for computer networking," IEEE Commun. Surv. & Tuts., vol. 15, pp. 1160-1191, 2013. https://doi.org/10.1109/SURV.2013.010413.00175
  3. S. Bitam, A. Mellouk, and S. Zeadally, "Bio-inspired routing algorithms survey for vehicular Ad Hoc networks," IEEE Commun. Surv. & Tuts., vol. 17, pp. 843-867, 2015. https://doi.org/10.1109/COMST.2014.2371828
  4. F. Dressler and O. B. Akan, "Bio-inspired networking: from theory to practice," IEEE Commun. Mag., vol. 48, pp. 176-183, 2010.
  5. F. Dressler and O. B. Akan, "A survey on bio-inspired networking," Comput. Netw., vol. 54, pp. 881-900, 2010. https://doi.org/10.1016/j.comnet.2009.10.024
  6. M. Roth and S. Wicker, "Termite: ad-hoc networking with stigmergy," in Proc. IEEE GLOBECOM, Dec. 2003.
  7. H. F. Wedde, M. Farooq, T. Pannenbaecker, B. Vogel, C. Mueller, J. Meth, and R. Jeruschkat, "BeeAdHoc: an energy efficient routing algorithm for mobile ad hoc networks inspired by bee behavior," in Proc. 7th Annu. Conf. Genetic and Evolutionary Computation, pp. 153-160, Washington DC, USA, Jun. 2005.
  8. M. Gunes, U. Sorges, and I. Bouazizi, "ARA-the ant-colony based routing algorithm for MANETs," in Int. Conf. Parall. Process., pp. 79-85, 2002.
  9. G. Di Caro, F. Ducatelle, and L. M. Gambardella, "AntHocNet: an adaptive nature-inspired algorithm for routing in mobile ad hoc networks," Eur. Trans. Emerging Telecommun. Technol., vol. 16, no. 5, pp. 443-455, Oct. 2005. https://doi.org/10.1002/ett.1062
  10. G. D. Caro, F. Ducatelle, and L. M. Gambardella, AntHocNet: An adaptive nature-inspired algorithm for routing in mobile Ad Hoc networks, in Technical Report, No. IDSIA-27-04-2004, 2004.
  11. M. Dorigo, G. D. Caro, and L. M. Gambardella, "Ant algorithms for discrete optimization," Artif. Life, vol. 5, pp. 137-172, 1999. https://doi.org/10.1162/106454699568728
  12. K. M. Sim and S. Weng Hong, "Ant colony optimization for routing and load-balancing: survey and new directions," IEEE Trans. Syst., Man, and Cybernetics - Part A: Syst. and Humans, vol. 33, pp. 560-572, 2003. https://doi.org/10.1109/TSMCA.2003.817391
  13. J. S. Baras and H. Mehta, "A probabilistic emergent routing algorithm for mobile Ad Hoc networks," in Proc. WiOpt03: Modeling and Optimization in Mob. Ad Hoc and Wirel. Netw., Sophia-Antipolis, France, Mar. 2003.
  14. K. M. Sim and W. H. Sun, "Multiple ant-colony optimization for network routing," in Proc. First Int. Symp. CyberWorld, pp. 277-281, Nov. 2002.
  15. G. D. Caro and M. Dorigo, "AntNet: Distributed stigmergetic control for communications networks," JAIR, vol. 9, pp. 317-365, 1998. https://doi.org/10.1613/jair.530
  16. C. E. Perkins and E. M. Royer, "Ad-hoc on-demand distance vector routing," in Proc. 2nd IEEE Workshop on Mob. Comput. Syst. and Appl., p. 90, Feb. 1999.
  17. D. B. Johnson and D. A. Maltz, "Dynamic source routing in Ad Hoc wireless networks," in Mob. Comput., vol. 353, pp. 153-181, 1996.
  18. R. R. Stewart, Stream Control Transmission Protocol, in RFC 4960, 2007.
  19. C. Bettstetter and O. Krause, "On border effects in modeling and simulation of wireless ad hoc networks," in Proc. IEEE MWCN, 2001.
  20. D. M. Blough, G. Resta, and P. Santi, "A statistical analysis of the long-run node spatial distribution in mobile ad hoc networks," in Proc. MSWiM'02, pp. 30-37, Atlanta, Georgia, USA, Sept. 2002.