DOI QR코드

DOI QR Code

Study on Intention and Attitude of Using Artificial Intelligence Technology in Healthcare

보건의료분야에서의 인공지능기술(AI) 사용 의도와 태도에 관한 연구

  • Kim, Jang-Mook (Department of Health Administration, College of Health Science, Dankook University)
  • 김장묵 (단국대학교 보건과학대학 보건행정학과)
  • Received : 2017.07.26
  • Accepted : 2017.08.20
  • Published : 2017.08.31

Abstract

The purpose of this study was to identify the factors affecting intention and attitude of artificial intelligence technology(AI) of university students in healthcare using UTAUT model. Participants were 278 college students and the data were collected through self-reported questionnaire from May 15 to June 14, 2016. The collected data were analyzed using PASW Statistics/AMOS 22.0. The results were as follows. The effect of expectation factor, social influence, usefulness of work, anxiety factor had a significant effect on use of AI technology Intention. Factor of expectation effect, social influence, usefulness of work, anxiety factor had a significant effect on use of AI technology. As a result of verifying the significance of the indirect effect, it can be seen that the direct effect of the anxiety factor on the attitude factor is partially mediated by the use intention factor and the intention to use was partially mediated in the direct effect of the usefulness factor of the task on the attitude factor. This result means that it is important to increase the expectation factors, social effects, and perceived usefulness through accurate information based on facts and to reduce vague anxiety in order to increase the positive intention and attitude of university students' use of AI technology.

본 연구는 UTAUT 모델을 이용하여 보건의료분야 대학생들의 인공지능기술(Artificial Intelligence Technology, AI)의 사용 의도와 태도에 영향을 미치는 요인들을 규명하기 위해 시행되었다. 연구대상은 278명의 대학생으로, 2016년 5월 15일부터 6월 14일까지 자기기입식 설문지를 통하여 자료를 수집하였다. 연구결과 성과기대, 사회적 영향, 업무의 유용성, 불안요인이 사용 의도에 유의미한 영향을 미치는 것으로 나타났다. 그리고 성과기대, 업무의 유용성, 불안요인은 태도에 유의미한 영향을 미치는 것으로 나타났으며, 사용 의도는 태도에 영향을 미치는 것으로 나타났다. 불안요인과 업무의 유용성이 태도에 미치는 직접 효과가 사용 의도에 의해 부분 매개하는 것으로 나타났다. 대학생들의 AI 기술에 대한 긍정적인 사용 의도와 태도를 높이기 위해서는 사실에 근거한 정확한 정보전달과 막연한 불안감을 줄이면서 성과기대, 사회적 영향, 인지된 유용성을 향상시키는 것이 중요한 것으로 나타났다.

Keywords

References

  1. S. G. Lee. (2015). Artificial Intelligence. Research and Policy, which will dominate the Future of Japan. IT Communication & Broadcast Policy, 27(6), 1-7.
  2. J. H. Lee et al. (2014). Big-Data Utilization Trend in Healthcare. Journal of Korean Telecommunication, 32(1), 63-75.
  3. Y. J. Chun. (2016). AI and Future of Healthcare Personnel-Trends, Prospects and Implications. Healthcare Management and Policy Research, 5(2), 106-112.
  4. K. Y. Lee & J. H. Kim. (2016). Artificial Intelligence Technology Trends and IBM Watson References in the Medical Field. Korean Medical Education Review, 18(2), 51-57. DOI : 10.17496/kmer.2016.18.2.51
  5. S. G. Lee. (2005). An Empirical Study on Mobile Technology Adoption based on the Technology Acceptance Model and Theory of Planned Behavior. Information Systems Review, 7(2), 61-84.
  6. V. Venkatesh. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information systems research, 11(4), 342-365. DOI : 10.1287/isre.11.4.342.11872
  7. V. Venkatesh et al. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  8. F. D. Davis, R. Bagozzi & R. Warshaw. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
  9. I. Ajzen. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 20(2), 179-211.
  10. S. Taylor & A. Todd. (1995). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176. DOI : 10.1287/isre.6.2.144
  11. F. D. Davis, R. Bagozzi & R. Warshaw. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of applied social psychology, 22(14), 1111-1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
  12. R. L. Thompson, C. A. Higgins & J. M. Howell. (1991). Personal computing: toward a conceptual model of utilization. MIS quarterly, 15(1), 125-143. DOI : 10.2307/249443
  13. G. C. Moore & I. Benbasat. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222. https://doi.org/10.1287/isre.2.3.192
  14. D. R. Compeau & C. A. Higgins. (1995). Computer self-efficacy: Development of a measure and initial test. MIS quarterly, 19(2), 189-211. DOI : 10.2307/249688
  15. C. Carlsson, J. Carlsson, K. Hyvonen, J. Puhakainen & P. Walden. (2006). Adoption of mobile devices/services-searching for answers with the UTAUT. The 39th Annual Hawaii International Conference on System Sciences (pp. 132a). Kauia : IEEE. DOI : 10.1109/hicss.2006.38
  16. Y. S. Wang, H. H. Lin & L. P. Luarn. (2006). Predicting Consumer Intention to Use Mobile Service. Information Systems Journal, 16(2), 157-179. DOI : 10.1111/j.1365-2575.2006.00213.x
  17. H. Amin. (2007). An Analysis of Mobile Credit Card Usage Intentions. Information Management & Computer Security, 15(4), 260-269. DOI : 10.1108/09685220710817789
  18. S. Y. Morna, J. Peter, M. Goldrick, A. Kathleen & J. D. Keeling. (2003). Using ZMET to Explore Barriers to the Adoption of 3G Mobile Banking Service. International Journal of Retail and Distribution Management, 31(6), 340-348. DOI : 10.1108/09590550310476079
  19. C. A. Chang. (2011). User Acceptance of NFC Mobile Phone Service: An Investigation Based on The UTAUT Model. The Service Industries Journal, 1-15.