DOI QR코드

DOI QR Code

New DTR Estimation Method Without Measured Solar and Wind Data

  • Ying, Zhan-Feng (School of Energy and Power Engineering, NanJing University of Science and Technology) ;
  • Chen, Yuan-Sheng (School of Energy and Power Engineering, NanJing University of Science and Technology) ;
  • Feng, Kai (School of Energy and Power Engineering, NanJing University of Science and Technology)
  • Received : 2016.08.05
  • Accepted : 2016.12.28
  • Published : 2017.03.01

Abstract

Dynamic thermal rating (DTR) of overhead transmission lines can provide a significant increase in transmission capacity compared to the static thermal rating. However, the DTR are usually estimated by the traditional thermal model of overhead conductor that is highly dependent on the solar, wind speed and wind direction data. Consequently, the estimated DTR would be unreliable and the safety of transmission lines would be reduced when the solar and wind sensors are out of function. To address this issue, this study proposed a novel thermal model of overhead conductor based on the thermal-electric analogy theory and Markov chain. Using this thermal model, the random variation of conductor temperature can be simulated with any specific current level and ambient temperature, even if the solar and wind sensors are out of function or uninstalled. On this basis, an estimation method was proposed to determine the DTR in the form of probability. The laboratory experiments prove that the proposed method can estimate the DTR reliably without measured solar and wind data.

Keywords

References

  1. W. Q. Sun, Y. Zhang, C. M. Wang, P. Song. "Flexible load shedding strategy considering real-time dynamic thermal line rating". IET Gener. Transm. Distrib. vol. 7, no. 2, pp. 130-137, 2013. https://doi.org/10.1049/iet-gtd.2012.0117
  2. S. D. Kim, and M. M. Morcos, "An application of dynamic thermal line rating control system to up-rate the ampacity of overhead transmission lines". IEEE Transactions on Power Delivery, vol. 28, pp.1231-1232, Apr. 2013. https://doi.org/10.1109/TPWRD.2012.2234940
  3. H. Banakar, N. Alguacil, and F. D galiana. "Electrothermal coordination part I: theory and implementation schemes". IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 798-805, May. 2005.
  4. P. Pytlak, P. Musilek, E. Lozowski, J. Toth, Modelling precipitation cooling of overhead conductors. Electric Power System Research. vol.81, pp. 2147-2154, 2011. https://doi.org/10.1016/j.epsr.2011.06.004
  5. Marcelo M, Doris S, Mark F, Identification of Critical Spans for Monitoring Systems in Dynamic Thermal Rating. IEEE Transactions on Power Delivery, vol. 27, no. 2, pp. 1002-1009, Apr. 2012 https://doi.org/10.1109/TPWRD.2012.2185254
  6. T. O. Swppa, S. Damsgaard-Mikkelsen, M. Clements, R. Payne, and N. Coad, "Application of real time thermal ratings for optimizing transmission line investment and operating decisions", presented at the CIGRE, Paris, France, 2000.
  7. C. Nascimento, J. Brito, E. Filho, G, Braga, G. Miranda, A. Bracarense, and S. Ueda, "The state of the art for increased overhead line ampacity utilizing new technologies and statistical criteria", in Proc. IEEE/Power Eng. Soc. Transm. Distrib, Conf, Expo. Latin America, pp. 464-464, 2004.
  8. IEEE standard for calculating the current-temperature relationship of bare overhead conductors, IEEE Standard 738-2006, Jan. 2007.
  9. Juliano S.A. Carneiro, L. Ferrarini, "A probabilistic protection against thermal overloads of transmission lines". Electric Power Systems Research, vol. 81, pp. 1874-1880, 2011. https://doi.org/10.1016/j.epsr.2011.05.011
  10. D. M. Kim, Y. H. Park, I. S. Bae, J. O. Kim. "Decision of transmission line rating based on assessment of thermal overload risk". In Proc. The Eleventh International Middle East Power Systems Conference, pp.366-370, 2006.
  11. H. Shaker, M. F. Firuzabad, F. Aminifar. "Fuzzy dynamic thermal rating of transmission lines". IEEE Transactions on Power Delivery. vol.27, pp. 1885-1982, OCT, 2012.
  12. A. Piccolo, A. Vaccaro, D. Villacci, "Thermal rating assessment of overhead lines by Affine Arithmetic". Electric Power Systems Research, vol.71, pp. 275-283, 2004. https://doi.org/10.1016/j.epsr.2004.01.018
  13. R. Bernini, A. Minardo, G.V. Persiano, A. Vaccaro, D. Villacci and L. Zeni. "Dynamic loading of overhead lines by adaptive learning techniques and distributed temperature sensing". IET Gener. Transm. Distrib., vol.1, pp. 912-919, 2007. https://doi.org/10.1049/iet-gtd:20060538
  14. J. Hosek, P. Musilek, E. Lozowski, P. Pytlak. "Effect of time resolution of meteorological inputs on dynamic thermal rating calculations". IET Gener. Transm. Distrib., vol. 5, pp. 941-947, 2011. https://doi.org/10.1049/iet-gtd.2011.0039
  15. M. K. Lee, S. H. Moon, Y. H. Kim, B. R. Moon, "Correcting abnormalities in meteorological data by machine learning", 2014 IEEE International Conference on Systems, Man, and Cybernetics October 5-8, San Diego, CA, USA, 2014.
  16. A. Ammous, S. Ghedira, B. Allard, H. Morel, and D. Renault. "Choosing a thermal model for electrothermal simulation of power semiconductor devices". IEEE Trans. Power Electr., vol. 14, pp. 300-307, Mar, 1999. https://doi.org/10.1109/63.750183
  17. G. Swift, L. Senior, T. S. Molinski and W. Lehn, "A fundamental approach to transformer thermal modeling-part I: theory and equivalent circuit". IEEE Trans. Power Del. vol.16, pp.171-175, Apr. 2001. https://doi.org/10.1109/61.915478
  18. W. Z. Black, R. L. Rehberg. "Simplified model for steady state and real-time ampacity of overhead conductors". IEEE Transactions on Power Apparatus and Systems, vol. PAS-104, pp. 2942-2953, Oct. 1985 https://doi.org/10.1109/TPAS.1985.319142
  19. H. Banakar, N. Alguacil, and F. D. Galiana. "Electrothermal Coordination Part I: Theory and Implementation Schemes". IEEE Trans. Power Syst., vol. 20, pp. 798-805, May. 2005.
  20. T. O. Seppa, S. D. Mikkelsen, M. Clements, R. Payne, and N. Coad, "Application of real time thermal ratings for optimizing transmission line investment and operating decisions", presented at the CIGRE, Paris, France, 2000.
  21. J. K. Raniga and R. K. Rayudu, "Dynamic rating of transmission lines-a New Zealand experience," in Proc. IEEE Power Eng. Soc. Winter Meeting, vol. 4, pp. 2403-2409, 2000.
  22. T. O. Seppa, "Increasing transmission capacity by real time monitoring," in Proc. IEEE Power Eng. Soc. Winter Meeting, vol. 2, pp. 1208-1211, 2002.
  23. D. U. J. Sonnadara, D. R. Jayewardene. "A Markov chain probability model to describe wet and dry patterns of weather at Colombo". Theoretical and Applied Climatology. vol. 119, pp. 333-340. Jan. 2015. https://doi.org/10.1007/s00704-014-1117-z
  24. H. X. Yang, Y. T. Li, L. Lu, R. Qi. "First order multivariate Markov chain model for generating annual weather data for Hong Kong". Energy and Buildings, vol.43, pp. 2371-2377, 2011. https://doi.org/10.1016/j.enbuild.2011.05.035
  25. O. Kwon, Y. J. Yoon, S. K. Moon, H. J. Choi, J. H. Shim. "Estimation of Singapore's hourly solar radiation using hybrid-Markov transition matrices method", International Journal of Precision Engineering and Manufacturing. vol. 14, pp. 323-327. Feb. 2013 https://doi.org/10.1007/s12541-013-0044-8
  26. L. L. Wilson, D. P. Lettenmaier, E. F. Wood. "Simulation of daily precipitation in the Pacific Northwest using a weather classification scheme". Surveys in Geophysics. vol. 12, pp. 127-142. 1991. https://doi.org/10.1007/BF01903415

Cited by

  1. THE INFLUENCE OF SPATIAL AND TEMPORAL DISTRIBUTION OF METEOROLOGY ON POWER SYSTEM OPERATION vol.74, pp.1937-8726, 2018, https://doi.org/10.2528/PIERM18072202