References
- Kim KS, Bae KM, Oh SY, Seo MK, Kang CG, Park SJ. Trend of carbon fiber-reinforced composites for lightweight vehicles. Elastomers Compos, 47, 65 (2012). https://doi.org/10.7473/EC.2012.47.1.065.
- Dostal CA; ASM International. Engineered Materials Handbook: Vol 1. Composites, Materials Park, 899 (1987).
- Choi WK, Kim HI, Kang SJ, Lee YS, Han JH, Kim BJ. Mechanical interfacial adhesion of carbon fibers-reinforced polarized-polypropylene matrix composites: effects of silane coupling agents. Carbon Lett, 17, 79 (2016). https://doi.org/10.5714/CL.2016.17.1.079.
-
Kaczmar JW, Naplocha K, Morgiel, J. Microstructure and strength of
$Al_2O_3$ and carbon fiber reinforced 2024 aluminum alloy composites. J Mater Eng Perform, 23, 2801 (2014). https://doi.org/10.1007/s11665-014-1036-2. - Aldousiri B, Shalwan A, Chin CW. A review on tribological behaviour of polymeric composites and future reinforcements. Adv Mater Sci Eng, 2013, 1 (2013). https://doi.org/10.1155/2013/645923.
- Zhang XR, Pei XQ, Wang QH. The effect of fiber oxidation on the friction and wear behaviors of short-cut carbon fiber/polyimide composites. eXPRESS Polym Lett, 1, 318 (2007). https://doi.org/10.3144/expresspolymlett.2007.45.
- Krenkel W, Heidenreich B, Renz R. C/C-SiC composites for advanced friction systems. Adv Eng Mater, 4, 427 (2002). https://doi.org/10.1002/1527-2648(20020717)4:7<427::AIDADEM427>3.0.CO;2-C.
- Paris JY, Vincent L, Denape J. High-speed tribological behaviour of a carbon/silicon-carbide composite. Compos Sci Technol, 61, 417 (2001). https://doi.org/10.1016/S0266-3538(00)00124-X.
- Jang GH, Cho KH, Park SB, Lee WG, Hong US, Jang H. Tribological properties of C/C-SiC composites for brake discs. Met Mater Int, 16, 61 (2010). https://doi.org/10.1007/s12540-010-0061-4.
- Liu L, Li W, Tang Y, Shen B, Hu W. Friction and wear properties of short carbon fiber reinforced aluminum matrix composites. Wear, 266, 733 (2009). https://doi.org/10.1016/j.wear.2008.08.009.
- Li SH, Chao CG. Effects of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites. Metall Mater Trans A, 35, 2153 (2004). https://doi.org/10.1007/s11661-004-0163-z.
- Manikandan P, Sieh R, Elayaperumal A, Le HR, Basu S. Micro/nanostructure and tribological characteristics of pressureless sintered carbon nanotubes reinforced aluminium matrix composites. J Nanomater, 2016, 1 (2016). https://doi.org/10.1155/2016/9843019.
- Casati R, Vedani M. Metal matrix composites reinforced by nanoparticles: a review. Metals, 4, 65 (2014). https://doi.org/10.3390/met4010065.
- Godet M. The third-body approach: a mechanical view of wear. Wear, 100, 437 (1984). https://doi.org/10.1016/0043-1648(84)90025-5.
- Berthier Y, Godet M, Brendle M. Velocity accommodation in friction. Tribol Trans, 32, 490 (1989). https://doi.org/10.1080/10402008908981917.
- Suarez S, Ramos-Moore E, Lechthaler B, Mucklich F. Grain growth analysis of multiwalled carbon nanotube-reinforced bulk Ni composites. Carbon, 70, 173 (2014). https://doi.org/10.1016/j.carbon.2013.12.089.
- Farhat ZN, Ding Y, Northwood DO, Alpas AT. Effect of grain size on friction and wear of nanocrystalline aluminum. Mater Sci Eng A, 206, 302 (1996). https://doi.org/10.1016/0921-5093(95)10016-4.
- Choi HJ, Lee SM, Bae DH. Wear characteristic of aluminum-based composites containing multi-walled carbon nanotubes. Wear, 270, 12 (2010). https://doi.org/10.1016/j.wear.2010.08.024.