DOI QR코드

DOI QR Code

2차원 광학 우적계 자료를 이용한 대구지역 우적크기분포 특성 분석

Characteristic of Raindrop Size Distribution Using Two-dimensional Video Disdrometer Data in Daegu, Korea

  • 방원배 (경북대학교 대기원격탐사연구소) ;
  • 권수현 (경북대학교 천문대기과학과) ;
  • 이규원 (경북대학교 대기원격탐사연구소)
  • Bang, Wonbae (Center for Atmospheric REmote sensing, Kyungpook National University) ;
  • Kwon, Soohyun (Department of Astronomy and Atmospheric Science, Kyungpook National University) ;
  • Lee, GyuWon (Center for Atmospheric REmote sensing, Kyungpook National University)
  • 투고 : 2017.10.24
  • 심사 : 2017.11.27
  • 발행 : 2017.12.31

초록

본 연구는 우적크기분포의 통계적 특성과 변동성을 알아보기 위하여, 2011-2012년 대구지역 2차원광학우적계자료를 분석하여 Marshall and Palmer(1948)의 우적크기분포 특성과 비교하였다. 우적크기분포의 특성변수로 강우강도(R), 레이더 반사도(Z), 보편특성수농도($N{_0}^{\prime}$), 보편특성직경($D{_m}^{\prime}$)을 계산하였다. 또한 스케일링 법칙을 사용하여 우적크기분포의 정규화 여부를 확인하였다. 분석 결과, 대구지역의 우적크기분포는 평균적으로 ${\log}_{10}N{_0}^{\prime}=2.37$, $D{_m}^{\prime}=1.04mm$이며 형태 인자의 경우 c =2.37, ${\mu}=0.39$를 가졌다. 대구지역의 우적크기분포를 Marshall and Palmer의 우적크기분포로 가정하여 계산한 결과, 평균적으로 ${\log}_{10}N{_0}^{\prime}=2.27$, $D{_m}^{\prime}=0.9mm$, c =1, ${\mu}=1$를 가졌다. 이 차이로부터 대구지역 우적크기분포는 Marshall and Palmer(1948)의 우적크기분포보다 통계적으로 더 높은 액체수함량을 가짐을 알 수 있다. 우적크기분포의 형태를 비교한 결과, 대구지역 우적크기분포는 위로 볼록한 모양이었다. Z > 45 dBZ를 기준으로 우적크기분포 형태에 변화가 있었다. 35 dBZ ${\leq}$ Z > 45 dBZ에서 대구지역 우적크기분포 특성은 해양성 기후대와 유사하였으나 Z > 45 dBZ에서는 Marshall and Palmer의 우적크기분포 특성과 유사하였다.

This study analyzes Two-dimensional video disdrometer (2DVD) data while summer 2011-2012 in Daegu region and compares with Marshall and Palmer (MP) distribution to find out statistical characteristics and characteristics variability about drop size distribution (DSD) of Daegu region. As the characterize DSD of Daegu region, this study uses single moment parameters such as rainfall intensity (R), reflectivity factor (Z) and double moment parameters such as generalized characteristics number concentration ($N{_0}^{\prime}$) and generalized characteristics diameter ($D{_m}^{\prime}$). Also, this study makes an assumption that DSD function can be expressed as general gamma distribution. The results of analysis show that DSD of Daegu region has ${\log}_{10}N{_0}^{\prime}=2.37$, $D{_m}^{\prime}=1.04mm$, and c =2.37, ${\mu}=0.39$ on average. When the assumption of MP distribution is used, these figures then end up with the different characteristics; ${\log}_{10}N{_0}^{\prime}=2.27$, $D{_m}^{\prime}=0.9mm$, c =1, ${\mu}=1$ on average. The differences indicate liquid water content (LWC) of Daegu distribution is generally larger than MP distribution at equal Z. Second, DSD shape of Daegu distribution is concave upward. Other important facts are the characteristics of Daegu distribution change when Z changes. DSD shape of Daegu region changes concave downward (c =2.05~2.55, ${\mu}=0.33{\sim}0.77$) to cubic function-like shape (c =3.0, ${\mu}=-0.13{\sim}-0.33$) at Z > 45 dBZ. 35 dBZ ${\leq}$ Z > 45 dBZ group of Daegu distribution has characteristics similar to maritime cluster of diverse climate DSD study. However, Z > 45 dBZ group of Daegu distribution has a difference from the cluster.

키워드

참고문헌

  1. Atlas, D., Srivastava, R.C., and Sekhon, R.S., 1973, Doppler radar characteristics of precipitation at vertical incidence. Reviews of Geophysics, 11, 1-35. https://doi.org/10.1029/RG011i001p00001
  2. Berne, A., Jaffrain, J., and Schleiss, M., 2012, Scaling analysis of the variability of the rain drop size distribution at small scale. Advances in Water Resources, 45, 2-12. https://doi.org/10.1016/j.advwatres.2011.12.016
  3. Bringi, V. N., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeu, W.L., and Schoenhuber, M., 2003, Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. Journal of the Atmospheric Sciences, 60, 354-365. https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
  4. Blanchard, D.C. and Spencer, A.T., 1970, Experiments on the generation of raindrop-size distributions by drop breakup. Journal of the Atmospheric Sciences, 27, 101-108. https://doi.org/10.1175/1520-0469(1970)027<0101:EOTGOR>2.0.CO;2
  5. Cha, J.W., Chang, K.H., Oh, S.N., Choi, Y.J., Jeong, J.Y., Jung, J.W., Yang, H.Y., Bae, J.Y., and Kang, S.Y., 2010, Analysis of observational case measured by MRR and PARSIVEL Disdrometer for understanding the physical characteristics of precipitation. Atmosphere. Korean Meteorological Society, 20, 37-47.
  6. Dixon, M. and Wiener, G., 1993, TITAN: Thunderstorm identification, tracking, analysis, and nowcasting-A radar-based methodology. Journal of Atmospheric and Oceanic Technology, 10, 785-797. https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
  7. Joanneum Research, 2015, 2D Video Distrometer Beyond State-of-the-Art Precipitation Measurement. http://www.distrometer.at/fileadmin/DIGITAL/produkte/2DVD_Video_DistrometerWEB.pdf (May 19 2017)
  8. Kruger, A. and Krajewski, W.F., 2002, Two-dimensional video disdrometer: A description. Journal of Atmospheric and Oceanic Technology, 19, 602-617. https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2
  9. Jung, S.H. and Lee, G., 2015, Radarbased cell tracking with fuzzy logic approach. Meteorological Applications, 22(4), 716-730. https://doi.org/10.1002/met.1509
  10. Lee, G.W., Zawadzki, I., Szyrmer, W., Sempere-Torres, D., and Uijlenhoet, R., 2004, A general approach to double-moment normalization of drop size distributions. Journal of applied meteorology, 43, 264-281. https://doi.org/10.1175/1520-0450(2004)043<0264:AGATDN>2.0.CO;2
  11. Marshall, J.S. and Palmer, W.M.K., 1948, The distribution of raindrops with size. Journal of meteorology, 5, 165-166. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  12. Maur, A.A., 2001, Statistical tools for drop size distributions: Moments and generalized gamma. Journal of the atmospheric sciences, 58, 407-418. https://doi.org/10.1175/1520-0469(2001)058<0407:STFDSD>2.0.CO;2
  13. Moon, J.Y., Kim, D.K., Kim, Y.H., Ha, J.C., and Chung, K.Y., 2013, Analysis of Summer Rainfall Case over Southern Coast Using MRR and PARSIVEL Disdrometer Measurements in 2012. Atmosphere. Korean Meteorological Society, 23, 265-273. https://doi.org/10.14191/Atmos.2013.23.3.265
  14. Sauvageot, H. and Lacaux, J.P., 1995, The shape of averaged drop size distributions. Journal of the Atmospheric Sciences, 52, 1070-1083. https://doi.org/10.1175/1520-0469(1995)052<1070:TSOADS>2.0.CO;2
  15. Suh, S.H., You, C.H., and Lee, D.I., 2016, Climatological characteristics of raindrop size distributions in Busan, Republic of Korea. Hydrology and Earth System Sciences, 20, 193-207. https://doi.org/10.5194/hess-20-193-2016
  16. Testud, J., Oury, S., Black, R.A., Amayenc, P., and Dou, X., 2001, The concept of "normalized" distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. Journal of Applied Meteorology, 40, 1118-1140. https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2
  17. Thurai, M., 2015, Towards Completing the Rain Drop Size Distribution Spectrum: A Case Study Involving 2D Video Disdrometer, Droplet Spectrometer, and Polarimetric Radar Measurements in Greeley, Colorado. In Bringi, V. N. et al. (eds.), 2015 AMS Conference on Radar Meteorology, Norman, AMS, 4B. 1
  18. Thurai, M., Gatlin, P.N., and Bringi, V.N., 2016, Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data. Atmospheric Research, 169, 416-423. https://doi.org/10.1016/j.atmosres.2015.04.011
  19. Tokay, A. and Short, D.A., 1996, Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. Journal of Applied Meteorology, 35, 355-371. https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2
  20. Torres, D.S., Porra, J.M., and Creutin, J.D., 1994, A general formulation for raindrop size distribution. Journal of Applied Meteorology, 33, 1494-1502. https://doi.org/10.1175/1520-0450(1994)033<1494:AGFFRS>2.0.CO;2
  21. Uijlenhoet, R., Smith, J.A., and Steiner, M., 2003, The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. Journal of the Atmospheric Sciences, 60, 1220-1238. https://doi.org/10.1175/1520-0469(2003)60<1220:TMSOEP>2.0.CO;2
  22. Ulbrich, C.W., 1983, Natural variations in the analytical form of the raindrop size distribution. Journal of Climate and Applied Meteorology, 22, 1764-1775. https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
  23. Ulbrich, C.W. and Atlas, D., 2007, Microphysics of raindrop size spectra: Tropical continental and maritime storms. Journal of Applied Meteorology and Climatology, 46, 1777-1791. https://doi.org/10.1175/2007JAMC1649.1
  24. You, C.H., Lee, D. I., Jang, M., Seo, K.J., Kim, K.E., and Kim, B.S., 2004, The characteristics of rain drop size distributions using a POSS in Busan area.Asia-Pacific Journal of Atmospheric Sciences, 40, 713-724.
  25. Waldvogel, A., 1974, The N 0 jump of raindrop spectra. Journal of the Atmospheric Sciences, 31, 1067-1078. https://doi.org/10.1175/1520-0469(1974)031<1067:TJORS>2.0.CO;2