DOI QR코드

DOI QR Code

기상청 기상레이더 관측망을 이용한 합성 하이브리드 고도면 강우량(HSR)의 정확도 검증

Accuracy Evaluation of Composite Hybrid Surface Rainfall (HSR) Using KMA Weather Radar Network

  • 류근수 (경북대학교 대기원격탐사연구소) ;
  • 정성화 (기상청 기상레이더센터 레이더분석과) ;
  • 오영아 (기상청 기상레이더센터 레이더분석과) ;
  • 박홍목 (경북대학교 대기원격탐사연구소) ;
  • 이규원 (경북대학교 대기원격탐사연구소)
  • Lyu, Geunsu (Center for Atmospheric REmote sensing (CARE), Kyungpook National University) ;
  • Jung, Sung-Hwa (Radar Analysis Division, Weather Radar Center, Korea Meteorological Administration) ;
  • Oh, Young-a (Radar Analysis Division, Weather Radar Center, Korea Meteorological Administration) ;
  • Park, Hong-Mok (Center for Atmospheric REmote sensing (CARE), Kyungpook National University) ;
  • Lee, GyuWon (Center for Atmospheric REmote sensing (CARE), Kyungpook National University)
  • 투고 : 2017.08.22
  • 심사 : 2017.10.20
  • 발행 : 2017.12.31

초록

본 연구는 기상청의 기상레이더 관측망을 이용한 하이브리드 고도면 강우추정 기법 기반의 새로운 정량적 합성강수량 추정 방법을 제시한다. HSR기법은 지형클러터, 빔차폐, 비 기상 에코 및 밝은 띠의 영향을 받지 않는 하이브리드 고도면의 반사도를 합성하는 것이 특징이다. HSR 합성반사도는 정적 HSR (STATIC)과 단일편파레이더에 대한 퍼지로직 기법과 이중편파레이더에 대한 시선방향 질감 기반의 품질관리 절차를 사용하는 동적 HSR (DYNAMIC) 합성으로 구분된다. STATIC과 DYNAMIC은 2014년 5월부터 10월까지 10개의 강우 사례에 대해 기상청 현업용 합성강우(MOSAIC)와 비교검증 하였다. 차폐 영역에서 STATIC, DYNAMIC, MOSAIC의 상관계수는 각각 0.52, 0.78, 0.69이며 평균 상대 오차는 각각 34.08, 30.08, 40.71%로 분석되었다.

This study presents a new nationwide quantitative precipitation estimation (QPE) based on the hybrid surface rainfall (HSR) technique using the weather radar network of Korea Meteorological Administration (KMA). This new nationwide HSR is characterized by the synthesis of reflectivity at the hybrid surface that is not affected by ground clutter, beam blockage, non-meteorological echoes, and bright band. The nationwide HSR is classified into static (STATIC) and dynamic HSR (DYNAMIC) mosaic depending on employing a quality control process, which is based on the fuzzy logic approach for single-polarization radar and the spatial texture technique for dual-polarization radar. The STATIC and DYNAMIC were evaluated by comparing with official and operational radar rainfall mosaic (MOSAIC) of KMA for 10 rainfall events from May to October 2014. The correlation coefficients within the block region of STATIC, DYNAMIC and MOSAIC are 0.52, 0.78, and 0.69, respectively, and their mean relative errors are 34.08, 30.08, and 40.71%.

키워드

참고문헌

  1. Bellon, A. and Zawadzki, I., 2003, A 9-year summary of radar characteristics of mesocyclonic storms and of deep convection in Southern Quebec. Atmosphereocean, 41, 99-120.
  2. Cho, Y.H., Lee, G., Kim, K.E., and Zawadzki, I., 2006, Identification and removal of ground echoes and anomalous propagation using the characteristics of radar echoes. Journal of Atmospheric and Oceanic Technology, 23, 1206-1222. https://doi.org/10.1175/JTECH1913.1
  3. Doviak, R.J. and Zrnic, D.S., 1993, Doppler Radar and Weather Observations. Academic Press, San Diego, USA, 562 p.
  4. Fulton, R.A., Breidenbach, J.P., Seo, D.J., Miller, D.A., and O'Bannon, T., 1998, The WSR-88D rainfall algorithm. Weather and Forecasting, 13, 377-395. https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
  5. Germann, U. and Joss, J., 2002, Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to the ground level. Journal of Applied Meteorology, 41, 542-557. https://doi.org/10.1175/1520-0450(2002)041<0542:MPTERP>2.0.CO;2
  6. Germann, U. and Joss, J., 2004, Operational measurement of precipitation in mountainous terrain. Weather radar, Springer, Berlin, Germany, 52-77 pp.
  7. Jung, S.H. and Kim, K.E., 2007, Simulation of radar beam propagation using Digital Elevation Model. Proceeding of the Spring Meeting of Korea Meteorological Society, 2007, 346-347.
  8. Joss, J. and Waldvogel, A., 1990, Precipitation measurements and hydrology. Radar in Meteorology, Boston, American Meteorological Society, 1990, 577-606.
  9. Joss, J. and Lee, R., 1995, The application of radar-gauge comparisons to operational precipitation profile corrections. Journal of Applied Meteorology, 34, 2612-2630. https://doi.org/10.1175/1520-0450(1995)034<2612:TAORCT>2.0.CO;2
  10. Kim, D.W., Kim, Y.H., Kim, K.H., Shin, S.S., Kim, D.K., Hwang, Y.J., Park, J.I., Choi, D.Y., and Lee, Y.H., 2012, Effect of urbanization on rainfall events during the 2010 summer intensive observation period over Seoul metropolitan area. Journal of Korean Earth Science Society, 33, 219-232. (in Korean) https://doi.org/10.5467/JKESS.2012.33.3.219
  11. Kim, E.H., Kim, M.K., and Lee, W.S., 2005, The regional characteristics of daily precipitation intensity in Korea for recent 30 years. Journal of Korean Earth Science Society, 26, 404-417. (in Korean)
  12. Kwon, S., Lee, G., Jung, S.H., Park, H.S., Suk, M.K., Cha, J.W., and Lee, C.K., 2012, Evaluation Radar and KNU QPE Algorithm. 2012 Radar Workshop, Daegu, Korea.
  13. Kwon, S., Jung, S.H., and Lee, G.W., 2015, Intercomparison of radar rainfall rate using Constant Altitude Plan Position Indicator and hybrid surface rainfall maps. Journal of Hydrology, 531, 234-247. https://doi.org/10.1016/j.jhydrol.2015.08.063
  14. Lyu G., Jung, S.H., Nam, K.Y., Kwon, S., Lee, C.R. and Lee, G., 2015, Improvement of radar rainfall estimation using radar reflectivity data from the hybrid lowest elevation angles. Journal of the Korean Earth Science Society, 36, 109-124. (in Korean) https://doi.org/10.5467/JKESS.2015.36.1.109
  15. Lyu, G., 2015, Composite radar rainfall estimation using a hybrid lowest elevation angles. Master Thesis, Kyungpook National University, Daegu, Korea, 68 p. (in Korean)
  16. Maddox, R.A., Zhang, J., Gourley, J.J., and Howard, K.W., 2002, Weather radar coverage over the contiguous United States. Weather and Forecasting, 17, 927-934. https://doi.org/10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2
  17. O'Bannon, T., 1997, Using a terrain-based hybrid scan to improve WSR-88D precipitation estimates. Preprints, 28th Conference on Radar Meteorology, Austin, TX, American Meteorological Society, 506-507.
  18. Westrick, K.J., Mass, C.F., and Colle, B.A., 1999, The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bulletin of the American Meteorological Society, 80, 2289-2298. https://doi.org/10.1175/1520-0477(1999)080<2289:TLOTWR>2.0.CO;2
  19. Ye, B.Y., 2013, Quality control of radar moment data by combining moment-based fuzzy logic algorithm and radar signal processing. Master Thesis, Kyungpook National University, Daegu, Korea, 72 p.
  20. Ye, B.Y., Lee, G., and Park, H.M., 2015, Identification and removal of non-meteorological echoes in dualpolarization radar data based on fuzzy logic algorithm. Advances in Atmospheric Sciences, 32, 1217-1230. https://doi.org/10.1007/s00376-015-4092-0
  21. Zhang, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., Cooten, S.V., Kelleher, K., Kitzmiller, D., Ding, F., Seo, D.J., Wells, E., and Dempsey, C., 2011, National Mosaic and Multi-Sensor QPE (NMQ) System: Description, Results, and Future Plans. Bulletin of the American Meteorological Society, 92, 1321-1338. https://doi.org/10.1175/2011BAMS-D-11-00047.1