DOI QR코드

DOI QR Code

Biophysical Effects Simulated by an Ocean General Circulation Model Coupled with a Biogeochemical Model in the Tropical Pacific

  • Park, Hyo-Jin (Gunsan Dongsan Middle School) ;
  • Moon, Byung-Kwon (Division of Science Education & Institute of Fusion Science, Chonbuk National University) ;
  • Wie, Jieun (Division of Science Education & Institute of Fusion Science, Chonbuk National University) ;
  • Kim, Ki-Young (4D Solution CO., LTD.) ;
  • Lee, Johan (National Institute of Meteorological Sciences) ;
  • Byun, Young-Hwa (National Institute of Meteorological Sciences)
  • 투고 : 2017.10.10
  • 심사 : 2017.12.14
  • 발행 : 2017.12.31

초록

Controversy has surrounded the potential impacts of phytoplankton on the tropical climate, since climate models produce diverse behaviors in terms of the equatorial mean state and El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) amplitude. We explored biophysical impacts on the tropical ocean temperature using an ocean general circulation model coupled to a biogeochemistry model in which chlorophyll can modify solar attenuation and in turn feed back to ocean physics. Compared with a control model run excluding biophysical processes, our model with biogeochemistry showed that subsurface chlorophyll concentrations led to an increase in sea surface temperature (particularly in the western Pacific) via horizontal accumulation of heat contents. In the central Pacific, however, a mild cold anomaly appeared, accompanying the strengthened westward currents. The magnitude and skewness of ENSO were also modulated by biophysical feedbacks resulting from the chlorophyll affecting El $Ni{\tilde{n}}o$ and La $Ni{\tilde{n}}a$ in an asymmetric way. That is, El $Ni{\tilde{n}}o$ conditions were intensified by the higher contribution of the second baroclinic mode to sea surface temperature anomalies, whereas La $Ni{\tilde{n}}a$ conditions were slightly weakened by the absorption of shortwave radiation by phytoplankton. In our model experiments, the intensification of El $Ni{\tilde{n}}o$ was more dominant than the dampening of La $Ni{\tilde{n}}a$, resulting in the amplification of ENSO and higher skewness.

키워드

참고문헌

  1. An, S.I., Ham, Y.G., Kug, J.S., Jin, F.F., and Kang, I.S., 2005, El Nino-La Nina asymmetry in the coupled model intercomparison project simulations. Journal of Climate, 18, 2617-2627. https://doi.org/10.1175/JCLI3433.1
  2. Cane, M.A., 1984, Modeling sea-level during El Nino. Journal of Physical Oceanography, 14, 1864-1874. https://doi.org/10.1175/1520-0485(1984)014<1864:MSLDEN>2.0.CO;2
  3. Chavez, F.P., Strutton, P.G., Friederich, C.E., Feely, R.A., Feldman, G.C., Foley, D.C., and McPhaden, M.J., 1999, Biological and chemical response of the equatorial pacific ocean to the 1997-98 El Nino. Science, 286, 2126-2131. https://doi.org/10.1126/science.286.5447.2126
  4. Dewitte, B., 2000, Sensitivity of an intermediate oceanatmosphere coupled model of the tropical pacific to its oceanic vertical structure. Journal of Climate, 13, 2363-2388. https://doi.org/10.1175/1520-0442(2000)013<2363:SOAIOA>2.0.CO;2
  5. Dunne, J.P., John, J.G., Shevliakova, E., Stouffer, R.J., Krasting, J.P., Malyshev, S.L., Milly, P.C.D., Sentman, L.T., Adcroft, A.J., Cooke, W., Dunne, K.A., Griffies, S.M., Hallberg, R.W., Harrison, M.J., Levy, H., Wittenberg, A.T., Phillips, P.J., and Zadeh, N., 2013, Gfdl's esm2 global coupled climate-carbon earth system models. Part II: Carbon system formulation and baseline simulation characteristics. Journal of Climate, 26, 2247-2267. https://doi.org/10.1175/JCLI-D-12-00150.1
  6. Griffies, S.M., Schmidt, M., and Herzfeld, M., 2009, Elements of mom4p1. Gfdl ocean group technical report, 6, 444.
  7. Large, W.G. and Yeager, S.G., 2009, The global climatology of an interannually varying air-sea flux data set. Climate Dynamics, 33, 341-364. https://doi.org/10.1007/s00382-008-0441-3
  8. Lengaigne, M., Menkes, C., Aumont, O., Gorgues, T., Bopp, L., Andre, J.M., and Madec, G., 2007, Influence of the oceanic biology on the tropical pacific climate in a coupled general circulation model. Climate Dynamics, 28, 503-516. https://doi.org/10.1007/s00382-006-0200-2
  9. Lewis, M.R., Carr, M.E., Feldman, G.C., Esaias, W., and Mcclain, C., 1990, Influence of penetrating solarradiation on the heat-budget of the equatorial pacificocean. Nature, 347, 543-545. https://doi.org/10.1038/347543a0
  10. Lewis, M.R., Cullen, J.J., and Platt, T., 1983, Phytoplankton and thermal structure in the upper oceanconsequences of nonuniformity in chlorophyll profile. Journal of Geophysical Research-Oceans, 88, 2565-2570. https://doi.org/10.1029/JC088iC04p02565
  11. Loptien, U., Eden, C., Timmermann, A., and Dietze, H., 2009, Effects of biologically induced differential heating in an eddy-permitting coupled ocean-ecosystem model. Journal of Geophysical Research-Oceans, 114, C06011, doi:10.1029/2008JC004936.
  12. Manizza, M., Le Quere, C., Watson, A.J., and Buitenhuis, E.T., 2005, Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophysical Research Letters, 32, L05603, doi:10.1029/2004GL020778.
  13. Marzeion, B., Timmermann, A., Murtugudde, R., and Jin, F.F., 2005, Biophysical feedbacks in the tropical pacific. Journal of Climate, 18, 58-70. https://doi.org/10.1175/JCLI3261.1
  14. McClain, C.R., Cleave, M.L., Feldman, G.C., Gregg, W.W., Hooker, S.B., and Kuring, N., 1998, Science quality seawifs data for global biosphere research. Sea Technology, 39, 10-16.
  15. Moon, B.K., 2007, Characteristics of the simulated ENSO in a CGCM. Journal of Korean Earth Science Society, 28, 343-356. (in Korean with English abstract) https://doi.org/10.5467/JKESS.2007.28.3.343
  16. Moon, B.K., Yeh, S.W., Dewitte, B., Jhun, J.G., Kang, I.S., and Kirtman, B.P., 2004, Vertical structure variability in the equatorial pacific before and after the pacific climate shift of the 1970s. Geophysical Research Letters, 31, L03203, doi:10.1029/2003GL018829.
  17. Murtugudde, R., Beauchamp, J., McClain, C.R., Lewis, M., and Busalacchi, A.J., 2002, Effects of penetrative radiation on the upper tropical ocean circulation. Journal of Climate, 15, 470-486. https://doi.org/10.1175/1520-0442(2002)015<0470:EOPROT>2.0.CO;2
  18. Nakamoto, S., Kumar, S.P., Oberhuber, J.M., Ishizaka, J., Muneyama, K., and Frouin, R., 2001, Response of the equatorial pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophysical Research Letters, 28, 2021-2024. https://doi.org/10.1029/2000GL012494
  19. Park, J.Y., Kug, J.S., Seo, H., and Bader, J., 2014, Impact of bio-physical feedbacks on the tropical climate in coupled and uncoupled gcms. Climate Dynamics, 43, 1811-1827. https://doi.org/10.1007/s00382-013-2009-0
  20. Patara, L., Vichi, M., Masina, S., Fogli, P.G., and Manzini, E., 2012, Global response to solar radiation absorbed by phytoplankton in a coupled climate model. Climate Dynamics, 39, 1951-1968. https://doi.org/10.1007/s00382-012-1300-9
  21. Sathyendranath, S., Gouveia, A.D., Shetye, S.R., Ravindran, P., and Platt, T., 1991, Biological-control of surface-temperature in the arabian sea. Nature, 349, 54-56. https://doi.org/10.1038/349054a0
  22. Schneider, B., Bopp, L., Gehlen, M., Segschneider, J., Frolicher, T.L., Cadule, P., Friedlingstein, P., Doney, S.C., Behrenfeld, M.J., and Joos, F., 2008, Climateinduced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences, 5, 597-614. https://doi.org/10.5194/bg-5-597-2008
  23. Smith, T.M., Reynolds, R.W., Peterson, T.C., and Lawrimore, J., 2008, Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880-2006). Journal of Climate. 21, 2283-2296. https://doi.org/10.1175/2007JCLI2100.1
  24. Strutton, P.G. and Chavez, F.P., 2004, Biological heating in the equatorial pacific: Observed variability and potential for real-time calculation. Journal of Climate, 17, 1097-1109. https://doi.org/10.1175/1520-0442(2004)017<1097:BHITEP>2.0.CO;2
  25. Timmermann, A. and Jin, F.F., 2002, Phytoplankton influences on tropical climate. Geophysical Research Letters, 29, 2014, doi:10.1029/2002GL015434.
  26. Vichi, M. and Masina, S., 2009, Skill assessment of the pelagos global ocean biogeochemistry model over the period 1980-2000. Biogeosciences, 6, 2333-2353. https://doi.org/10.5194/bg-6-2333-2009
  27. Wetzel, P., Maier-Reimer, E., Botzet, M., Jungclaus, J., Keenlyside, N., and Latif, M., 2006, Effects of ocean biology on the penetrative radiation in a coupled climate model. Journal of Climate, 19, 3973-3987. https://doi.org/10.1175/JCLI3828.1
  28. Yeh, S.W., Dewitte, B., Jhun, J.G., and Kang, I.S., 2001, The characteristic oscillation induced by coupled processes between oceanic vertical modes and atmospheric modes in the tropical pacific. Geophysical Research Letters, 28, 2847-2850. https://doi.org/10.1029/2001GL012854
  29. Yu, J.Y. and Kim, S.T., 2010, Identification of centralpacific and eastern-pacific types of enso in cmip3 models. Geophysical Research Letters, 37, L15705, doi:10.1029/2010GL044082.
  30. Zhang, R.H., Gao, C., Kang, X.B., Zhi, H., Wang, Z.G., and Feng, L.C., 2015, Enso modulations due to interannual variability of freshwater forcing and ocean biology-induced heating in the tropical pacific. Scientific Reports, 5, doi:10.1038/srep18506.