DOI QR코드

DOI QR Code

On Graded 2-Absorbing and Graded Weakly 2-Absorbing Primary Ideals

  • Soheilnia, Fatemeh (Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University) ;
  • Darani, Ahmad Yousefian (Department of Mathematics and Applications, University of Mohaghegh Ardabili)
  • Received : 2016.11.26
  • Accepted : 2017.11.16
  • Published : 2017.12.23

Abstract

Let G be an arbitrary group with identity e and let R be a G-graded ring. In this paper, we define the concept of graded 2-absorbing and graded weakly 2-absorbing primary ideals of commutative G-graded rings with non-zero identity. A number of results and basic properties of graded 2-absorbing primary and graded weakly 2-absorbing primary ideals are given.

Keywords

References

  1. D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29(2003), 831-840.
  2. D. D. Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J., 12(3)(2005), 423-429.
  3. S. E. Atani, On Graded Weakly Primary Ideals, Quasigroups and Related Systems, 13(2005), 185-191.
  4. S. E. Atani, On Graded Weakly Prime Ideals, Turk. J. Math., 30(2006), 351-358.
  5. D. F. Anderson and A. Badawi, On n-absorbing ideals on commutative rings, Comm. Algebra, 39(2011), 1646-1672. https://doi.org/10.1080/00927871003738998
  6. A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(2007), 417-429. https://doi.org/10.1017/S0004972700039344
  7. A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing Primary Ideals in Commutative Rings, Bull. Korean Math. Soc., 51(4)(2014), 1163-1173. https://doi.org/10.4134/BKMS.2014.51.4.1163
  8. A. Badawi, U. Tekir and E. Yetkin, On Weakly 2-absorbing Primary Ideals of Commutative Rings, J. Korean Math. Soc., 52(1)(2015), 97-111. https://doi.org/10.4134/JKMS.2015.52.1.097
  9. A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39(2013), 441-452.
  10. A. Y. Darani and F. Soheilnia, On 2-absorbing and weakly 2-absorbing submodules, Thai J. Math. 9(2011), 577-584.
  11. A. Y. Darani and F. Soheilnia, On n-absorbing submodules, Math. Commun. 17(2012), 547-557.
  12. H. Mostafanasab and A. Y. Darani, 2-irreducible and strongly 2-irreducible ideals of commutative rings, Miskols. Math. Note, 17(1)(2016) 441-455. https://doi.org/10.18514/MMN.2016.1490
  13. C. Nastasescu and F. V. Oystaeyen, Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, (1982).
  14. D. G. Northcott, Lessons on Rings, Modules and Multiplicities, Cambridge Univ. Press, Cambridge, 1968.
  15. F. V. Oystaeyen, Generlize rees rings and arithmetical graded rings, J. Algebra, 82(1983), 185-193. https://doi.org/10.1016/0021-8693(83)90180-1
  16. M. Refai and K. Al-Zoubi, On Graded Primary Ideals, Turk. J. Math., 28(2004), 217-229.
  17. M. Refai M. Hailat and S. Obiedat, Graded Radicals and Graded Prime Spectra, Far East Journal of Mathematical Sciences, part I (2000), 59-73.