DOI QR코드

DOI QR Code

Neuroprotective effects of Rg3-enriched Korean Red Ginseng on alcohol-induced apoptosis in PC12 Cells

PC12 세포에서 알코올 유발성 세포 사멸에 대한 Rg3 풍부 고려 홍삼의 신경세포 보호 효과

  • Choi, Na-Eun (Department of Biomedical Laboratory Science, College of Medical Science, Konyang University) ;
  • Ryu, Jin-Hyeob (Biorchestra Ltd., KRIBB) ;
  • Lee, Dong-Ha (Department of Biomedical Laboratory Science, Korea Nazarene University) ;
  • Cho, Hyun-Jeong (Department of Biomedical Laboratory Science, College of Medical Science, Konyang University)
  • 최나은 (건양대학교 임상병리학과) ;
  • 류진협 ((주)바이오오케스트라) ;
  • 이동하 (나사렛대학교 임상병리학과) ;
  • 조현정 (건양대학교 임상병리학과)
  • Received : 2017.11.01
  • Accepted : 2017.12.08
  • Published : 2017.12.31

Abstract

Excessive alcohol consumption is one of the leading causes of many neurological diseases, such as dementia and Alzheimer's disease, and many efforts are under way to solve them. Red ginseng is known to enhance neuronal survival, inhibit apoptosis, and promote nerve regeneration of nerve cells. This study examined whether Rg3-enriched Korean red ginseng extract (KRG) inhibits the apoptosis of PC12 cells caused by alcohol-induced neurotoxicity and how KRG regulates several factors related to the caspase mediated pathway. In this way, the cell survival rate and apoptosis rate of PC12 cells were measured using an EZ-Cytox cell viability assay kit and flow cytometry, respectively. The expression of the apoptosis-related proteins (Bcl-2, Bid, Bax and caspase-3) were analyzed by western blotting, and the significance of the measured results was confirmed using the ANOVA method. As a result, KRG increased the expression of Bcl-2; inhibited the expression of Bid, Bax, and caspase-3; and inhibited the apoptosis of alcohol-induced PC12 cells. These results mean that the KRG-induced increase in Bcl-2 expression and down-regulation of Bid and Bax expression down-regulate caspase-3 expression, which in turn inhibits the mitochondrial apoptotic pathways. This study suggests that KRG is worth developing as a neuroprotective agent candidate.

과도한 음주는 치매 및 알츠하이머 병과 같은 여러 신경계 질환을 일으키는 주요원인 중 하나로 알려져 있으며 이를 해결하기 위한 많은 노력인 진행 중이다. 또한, 홍삼은 신경 세포의 생존, 세포 자멸사의 억제 및 신경 세포의 신경 재생을 향상시키는 것으로 알려져 있다. 본 연구의 목적은 Rg3 풍부 고려홍삼 추출액(KRG)이 알코올 유발성 신경독성으로 인하여 일어나는 PC12 세포의 세포 사멸을 억제 할 수 있는지, 그리고 KRG가 caspase 매개 경로와 관련된 몇 가지 인자들을 어떻게 조절하는지 확인하는 것이다. 그 방법으로, 우리는 PC12 세포에서의 세포 생존율과 세포 사멸율은 EZ-Cytox 세포 생존율 측정 kit와 유세포 분석기로 측정하였고, 세포 자멸 관련 단백질(Bcl-2, Bax, caspase-3)의 발현 정도를 Western blot기법으로 측정하였으며, 측정된 결과의 유의성을 ANOVA 분석법으로 확인하였다. 그 결과, KRG는 Bcl-2의 발현을 증가시키고, Bid와 Bax 및 caspase-3 발현을 저해하였고, 이를 통해 알코올로 유도된 PC12 세포의 세포 사멸을 억제하였다. 이러한 결과를 통해, KRG에 의해 유도된 Bcl-2 발현의 증가와 Bid 및 Bax 발현의 하향 조절이 caspase-3 발현을 하향 조절하고, 결국 미토콘드리아 세포 사멸 경로를 억제한다는 것을 결론내릴 수 있었다. 본 연구는 향 후, KRG가 신경 보호제 후보로서 개발할 가치가 있음을 제시하였다.

Keywords

References

  1. R. N. Kalaria, G. E. Maestre, R. Arizaga, R. P. Friedland, D. Galasko, K. Hall, J. A. Luchsinger, A. Ogunniyi, E. K. Perry, F. Potocnik, M. Prince, R. Stewart, A. Wimo, Z. X. Zhang, P. Antuono, "Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors", Lancet Neurol, vol. 7, no. 9, pp. 812-826, September, 2008. DOl: https://doi.org/10.1016/S1474-4422(08)70169-8
  2. B. N. Ramesh, T. S. Rao, A. Prakasam, K. Sambamurti, K. S. Rao, "Neuronutrition and Alzheimer's disease", J Alzheimers Dis, vol. 19, no. 4, pp. 1123-1139, 2010. DOl: https://doi.org/10.3233/JAD-2010-1312
  3. M. Gasior, M. A. Rogawski, A. L. Hartman, "Neuroprotective and disease-modifying effects of the ketogenic diet", Behav Pharmacol, vol. 17, no. 5-6, pp. 431-439, September, 2006. DOl: https://doi.org/10.1097/00008877-200609000-00009
  4. F. C. Lau, B. Shukitt-Hale, J. A. Joseph, "Nutritional intervention in brain aging: reducing the effects of inflammation and oxidative stress", Subcell Biochem, vol. 42, pp. 299-318, 2007. DOl: https://doi.org/10.1007/1-4020-5688-5_14
  5. R. Dosunmu, J. Wu, M. R. Basha, N. H. Zawia, "Environmental and dietary risk factors in Alzheimer's disease", Expert Rev Neurother, vol. 7, no. 7, pp. 887-900, July, 2007. DOl: https://doi.org/10.1586/14737175.7.7.887
  6. J. W. Olney, D. F. Wozniak, V. Jevtovic-Todorovic, N. B. Farber, P. Bittigau, C. lkonomidou, "Drug-induced apoptotic neurodegeneration in the developing brain", Brain Pathol, vol. 12, no. 4, pp. 488-498, October, 2002. DOl: https://doi.org/10.1111/j.1750-3639.2002.tb00467.x
  7. J. M. Gohlke, W. C. Griffith, S. M. Bartell, T. A. Lewandowski, E. M. Faustman, "A computational model for neocortical neuronogenesis predicts ethanol-induced neocortical neuron number deficits", Dev Neurosci, vol. 24, no. 6, pp. 467-477, 2002. DOl: https://doi.org/10.1159/000069357
  8. Y. Sari,F. C. Zhou, "Prenatal alcohol exposure causes long-term serotonin neuron deficit in mice", Alcohol Clin Exp Res, vol. 28, no. 6, pp. 941-948, June, 2004. DOl: https://doi.org/10.1097/01.ALC.0000128228.08472.39
  9. J. Y. Han, Y. Joo, Y. S. Kim, Y. K. Lee, H. J. Kim, G. J. Cho, W. S. Choi, S. S. Kang, "Ethanol induces cell death by activating caspase-3 in the rat cerebral cortex", Mol Cells, vol. 20, no. 2, pp. 189-195, October, 2005.
  10. J. W. Maas, R. A. lndacochea, L. M. Muglia, T. T. Tran, S. K. Vogt, T. West, A. Benz, A. A. Shute, D. M. Holtzman, S. Mennerick, J. W. Olney, L. J. Muglia, "Calcium-Stimulated Adenylyl Cyclases Modulate Ethanol-lnduced Neurodegeneration in the Neonatal Brain", The Journal of Neuroscience, vol. 25, no. 9, pp. 2376-2385, 2005. DOl: https://doi.org/10.1523/JNEUROSCl.4940-04.2005
  11. Y. Tizabi, K. F. Manaye, R. E. Taylor, "Nicotine blocks ethanol-induced apoptosis in primary cultures of rat cerebral cortical and cerebellar granule cells", Neurotoxicity Research, vol. 7, no. 4, pp. 319, December, 2005. DOl: https://doi.org/10.1007/BF03033888
  12. K. Mann, l. Agartz, C. Harper, S. Shoaf, R. R. Rawlings, R. Momenan, D. W. Hommer, A. Pfefferbaum, E. V. Sullivan, R. F. Anton, D. J. Drobes, M. S. George, R. Bares, H.-J. Machulla, G. Mundle, M. Reimold, A. Heinz, "Neuroimaging in Alcoholism: Ethanol and Brain Damage", Alcoholism: Clinical and Experimental Research, vol. 25, pp. 104S-109S, May, 2001. DOl: https://doi.org/10.1111/j.1530-0277.2001.tb02383.x
  13. X. L. Li, W. D. Cheng, J. Li, X. L. Guo, C. J. Guo, X.H. Meng, S. G. Sun, L. X. Wang, "Protective effect of estrogen on apoptosis in a cell culture model of Parkinson's disease", Clin lnvest Med, vol. 31, no. 5, pp. E258-E264, October, 2008. DOl: https://doi.org/10.25011/cim.v31i5.4872
  14. D. H. Youn, S. J. Kim, K. S. Ahn, J. Y. Um, S. H. Hong, "Korean Red Ginseng improves atopic dermatitis-like skin lesions by suppressing expression of proinflammatory cytokines and chemokines in vivo and in vitro", J Ginseng Res, vol. 41, no. 2, pp. 134-143, February, 2017. DOl: https://doi.org/10.1016/j.jgr.2016.02.003
  15. K. S. Baek, Y. S. Yi, Y. J. Son, D. Jeong, N. Y. Sung, A. Aravinthan, J. H. Kim, J. Y. Cho, "Comparison of anticancer activities of Korean Red Ginseng-derived fractions", J Ginseng Res, vol. 41, no. 3, pp. 386-391, January, 2017. DOl: https://doi.org/10.1016/j.jgr.2016.11.001
  16. W. Y. Ong, T. Farooqui, H. L. Koh, A. A. Farooqui, E. A. Ling, "Protective effects of ginseng on neurological disorders", Frontiers in Aging Neuroscience, vol. 7, no. 129, July, 2015. DOl: https://doi.org/10.3389/fnagi.2015.00129
  17. S. Ryu, S. Koo, K. T. Ha, S. Kim, "Neuroprotective effect of Korea Red Ginseng extract on 1-methyl-4-phenylpyridinium-induced apoptosis in PC12 Cells", Animal Cells and Systems, vol. 20, no. 6, pp. 363-368, December, 2016. DOl: https://doi.org/10.1080/19768354.2016.1257510
  18. X. Sun, J. Liu, J. F. Crary, C. Malagelada, D. Sulzer, L. A. Greene, O. A. Levy, "ATF4 Protects Against Neuronal Death in Cellular Parkinson's Disease Models by Maintaining Levels of Parkin", The Journal of Neuroscience, vol. 33, no. 6, pp. 2398-2407, 2013. DOl: https://doi.org/10.1523/JNEUROSCl.2292-12.2013
  19. J. Wang, F. Gao, C. Zhang, "Protective effect of tetramethylpyrazine on caffeine-induced PC1 2 cell injury", Herald of Medicine, vol. 33, no. 6, pp. 695-698, 2014.
  20. N. J. Pantazis, D. P. Dohrman, J. Luo, C. R. Goodlett, J. R. West, "Alcohol reduces the number of pheochromocytoma (PC12) cells in culture", Alcohol, vol. 9, no. 3, pp. 171-180, May-Jun, 1992. DOl: https://doi.org/10.1016/0741-8329(92)90048-F
  21. F. Fadda,Z. L. Rossetti, "Chronic ethanol consumption: from neuroadaptation to neurodegeneration", Prog Neurobiol, vol. 56, no. 4, pp. 385-431, November, 1998. DOl: https://doi.org/10.1016/S0301-0082(98)00032-X
  22. D. S. Sheth, N. F. Tajuddin, M. J. Druse, "Antioxidant neuroprotection against ethanol-induced apoptosis in HN2-5 cells", Brain Res, vol. 1285, pp. 14-21, August, 2009. DOl: https://doi.org/10.1016/j.brainres.2009.06.029
  23. M. Tomas, M. P. Marin, E. Martinez-Alonso, G. Esteban-Pretel, A. Diaz-Ruiz, R. Vazquez-Martinez, M. M. Malagon, J. Renau-Piqueras, J. A. Martinez-Menarguez, "Alcohol induces Golgi fragmentation in differentiated PC12 cells by deregulating Rab1-dependent ER-to-Golgi transport", Histochem Cell Biol, vol. 138, no. 3, pp. 489-501, September, 2012. DOl: https://doi.org/10.1007/s00418-012-0970-z
  24. A. Gross, "BCL-2 family proteins as regulators of mitochondria metabolism", Biochimica et Biophysica Acta (BBA)-Bioenergetics, vol. 1857, no. 8, pp. 1243-1246, 2016. DOl: https://doi.org/10.1016/j.bbabio.2016.01.017
  25. W. A. Siddiqui, A. Ahad, H. Ahsan, "The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update", Archives of toxicology, vol. 89, no. 3, pp. 289-317, 2015. DOl: https://doi.org/10.1007/s00204-014-1448-7
  26. K. M. Boatright, G. S. Salvesen. "Mechanisms of caspase activation", Curr Opin Cell Biol., vol. 15, no. 6, pp. 725-731, December, 2003. DOl: https://doi.org/10.1016/j.ceb.2003.10.009
  27. N. N. Danial, S. J. Korsmeyer. "Cell death: critical control points", Cell, vol. 116, no. 2, pp. 205-219. January, 2004. DOl: https://doi.org/10.1016/S0092-8674(04)00046-7