DOI QR코드

DOI QR Code

Development of a Gridded Simulation Support System for Rice Growth Based on the ORYZA2000 Model

ORYZA2000 모델에 기반한 격자형 벼 생육 모의 지원 시스템 개발

  • Hyun, Shinwoo (Department of Plant Science, Seoul National University) ;
  • Yoo, Byoung Hyun (Department of Plant Science, Seoul National University) ;
  • Park, Jinyu (Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Kwang Soo (Department of Plant Science, Seoul National University)
  • 현신우 (서울대학교 식물생산과학부) ;
  • 유병현 (서울대학교 식물생산과학부) ;
  • 박진유 (서울대학교 농업생명과학연구원) ;
  • 김광수 (서울대학교 식물생산과학부)
  • Received : 2017.10.30
  • Accepted : 2017.11.20
  • Published : 2017.12.30

Abstract

Regional assessment of crop productivity using a gridded simulation approach could aid policy making and crop management. Still, little effort has been made to develop the systems that allows gridded simulations of crop growth using ORYZA 2000 model, which has been used for predicting rice yield in Korea. The objectives of this study were to develop a series of data processing modules for creating input data files, running the crop model, and aggregating output files in a region of interest using gridded data files. These modules were implemented using C++ and R to make the best use of the features provided by these programming languages. In a case study, 13000 input files in a plain text format were prepared using daily gridded weather data that had spatial resolution of 1km and 12.5 km for the period of 2001-2010. Using the text files as inputs to ORYZA2000 model, crop yield simulations were performed for each grid cell using a scenario of crop management practices. After output files were created for grid cells that represent a paddy rice field in South Korea, each output file was aggregated into an output file in the netCDF format. It was found that the spatial pattern of crop yield was relatively similar to actual distribution of yields in Korea, although there were biases of crop yield depending on regions. It seemed that those differences resulted from uncertainties incurred in input data, e.g., transplanting date, cultivar in an area, as well as weather data. Our results indicated that a set of tools developed in this study would be useful for gridded simulation of different crop models. In the further study, it would be worthwhile to take into account compatibility to a modeling interface library for integrated simulation of an agricultural ecosystem.

최적의 재배관리나 식량생산 관력 정책 수립의 위해 지역적인 작물 생산성 모의 정보들이 사용 될 수 있다. 국내 주요 작물인 벼의 생산성 예측을 위해 ORYZA2000 모델이 널리 사용되어 왔지만, 지역 규모에서 생산성을 예측하기 위한 격자별 작물 모델 구동 체계는 보고되어 있지 않다. 본 연구에서는 격자형식의 입력자료를 사용하여 작물 모델을 구동하고 공간적인 생산성 예측자료를 생산할 수 있는 시스템을 개발하였다. 이를 위해 입출력 처리 모듈과 격자별 모델 구동 모듈을 개발하였으며, 각각의 모듈은 C++와 R을 이용하여 구현되었다. 사례 연구를 위해 남한의 논 지역을 대상으로 2000년대에 대한 생산성을 모의하였다. 1km 및 12.5km 해상도의 격자형 기상자료로부터 13000여개의 기상입력자료가 생성되었다. 관행적인 재배관리 설정을 사용하여 격자별로 구동을 하였으며, 출력자료는 다시 netCDF 형태의 격자형 자료로 취합하였다. 모의된 벼 생산성의 공간적 분포는 실제 분포와 비슷한 경향을 보였으나, 실제 생산성과는 차이가 있었다. 이러한 차이는 이앙시기, 품종 등의 재배관리의 차이 또는 기상자료의 불확실성에 의해 생기게 된다. 본 연구에서 개발된 격자별 모델 구동 시스템을 통해 다른 작물 모델을 이용한 격자별 모의가 가능할 것이다.

Keywords

References

  1. Angulo, C., R. Rotter, R. Lock, A. Enders, S. Fronzek, and F. Ewert, 2013: Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agricultural and Forest Meteorology 170, 32-46. https://doi.org/10.1016/j.agrformet.2012.11.017
  2. Basso, B., J. T. Ritchie, F. J. Pierce, R. P. Braga, and J. W. Jones, 2001: Spatial validation of crop models for precision agriculture. Agricultural Systems 68(2), 97-112. https://doi.org/10.1016/S0308-521X(00)00063-9
  3. Besharat, F., A. A. Dehghan, and A. R. Faghih, 2013: Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews 21, 798-821. https://doi.org/10.1016/j.rser.2012.12.043
  4. Bouman, B. A. M., M. J. Kropff, T. P. Tuong, M. C. S. Wopereis, H. F. M. ten Berge, and H. H. van Laar 2001: ORYZA2000: modeling lowland rice (Vol. 1). IRRI.
  5. Elliott, J., D. Kelly, J. Chryssanthacopoulos, M. Glotter, K. Jhunjhnuwala, N. Best, M. Wilde, and I. Foster, 2014: The parallel system for integrating impact models and sectors (pSIMS). Environmental Modelling & Software 62, 509-516. https://doi.org/10.1016/j.envsoft.2014.04.008
  6. GLOBE Task Team and others (Hastings, D. A., P. K., Dunbar, G. M. Elphingstone, M. Bootz, H. Murakami, H. Maruyama, H. Masaharu, P. Holland, J. Payne, N. A. Bryant, T. L. Logan, J.-P. Muller, G. Schreier, and J. S. MacDonald), eds., 1999: The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado 80305-3328, U.S.A. Digital data base on the World Wide Web (URL: http://www.ngdc.noaa.gov/mgg/topo/globe.html) and CD-ROMs.
  7. Hyun, S., and K. Kim, 2016: Assessment of the angstrom-prescott coefficients for estimation of solar radiation in Korea. Korean Journal of Agricultural and Forest Meteorology 18(4), 221-232. https://doi.org/10.5532/KJAFM.2016.18.4.221
  8. Kim, H. J., B. K. Shin, and W. Kim, 2014: A study on hydromorphology and vegetation features depending on typology of natural streams in Korea. Korean Journal of Environment and Ecology 28(2), 215-234. https://doi.org/10.13047/KJEE.2014.28.2.215
  9. Kim, J., C. K. Lee, H. Kim, B. W. Lee, and K. S. Kim, 2015: Requirement analysis of a system to predict crop yield under climate change. Korean Journal of Agricultural and Forest Meteorology 17(1), 1-14. https://doi.org/10.5532/KJAFM.2015.17.1.1
  10. Lee, C. K., J. Kim, and K. S. Kim, 2015: Development and application of a weather data service client for preparation of weather input files to a crop model. Computers and Electronics in Agriculture 114, 237-246. https://doi.org/10.1016/j.compag.2015.03.021
  11. Lee, J. T., K. M. Shim, H. S. Bang, M. H. Kim, K. K. Kang, Y. E. Na, M. S. Han, and D. B. Lee, 2010: An analysis of changes in rice growth and growth period using climatic tables of 1960s (1931-1960) and 2000s (1971-2000). Journal of Korean Society of Soil Science and Fertilizer 43(6), 1018-1023.
  12. Royce, F. S., J. W. Jones, and J. W. Hansen, 2001: Model -based optimization of crop management for climate forecast applications. Transactions of the ASAE 44(5), 1319pp.
  13. Samani, Z., 2000: Estimating solar radiation and evapotranspiration using minimum climatological data. Journal of Irrigation and Drainage Engineering 126(4), 265-267. https://doi.org/10.1061/(ASCE)0733-9437(2000)126:4(265)
  14. van Oort, P. A. J., M. E. de Vries, H. Yoshida, and K. Saito, 2015: Improved climate risk simulations for rice in arid environments. PLoS ONE 10(3): e0118114. https://doi.org/10.1371/journal.pone.0118114.
  15. Xiong, W., I. Holman, D. Conway, E. Lin, and Y. Li, 2008: A crop model cross calibration for use in regional climate impacts studies. Ecological Modelling 213, 365-380. https://doi.org/10.1016/j.ecolmodel.2008.01.005
  16. Yoo, B. H., and K. S. Kim, 2017: Development of a gridded climate data tool for the coordinated regional climate downscaling experiment data. Computers and Electronics in Agriculture 133, 128-140. https://doi.org/10.1016/j.compag.2016.12.001