DOI QR코드

DOI QR Code

The adsorption-desorption behavior of strontium ions with an impregnated resin containing di (2-ethylhexyl) phosphoric acid in aqueous solutions

  • Kalal, Hossein Sid (Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, AEOI) ;
  • Khanchi, Ali Reza (Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, AEOI) ;
  • Nejatlabbaf, Mojtaba (Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, AEOI) ;
  • Almasian, Mohammad Reza (Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, AEOI) ;
  • Saberyan, Kamal (Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, AEOI) ;
  • Taghiof, Mohammad (Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, AEOI)
  • Received : 2017.11.08
  • Accepted : 2018.01.29
  • Published : 2017.12.25

Abstract

An Amberlite XAD-4 resin impregnated with di(2-ethylhexyl)phosphoric acid was prepared and its adsorption-desorption behaviors with Sr(II) ions under various conditions was examined. The resin was characterized by fourier transform infrared and thermal analysis techniques. The effects contact time, temperature, pH, interfering ions and eluants were studied. Results showed that adsorption of Sr (II) well fitted with pseudo-second-order kinetic model. The equilibrium adsorption data of Sr (II) on the impregnated resin were analyzed by Jossens, Weber-van Vliet, Redlich-Peterson and Fritz-Schlunder models to find out desirable equilibrium condition. Among them, the Fritz-Schlunder model best fitted to the experimental data. The maximum sorption capacity of impregnated resin amounted to 0.45 mg/ g at pH 8.0 and $20^{\circ}C$.

Keywords

References

  1. Bilgin, B., Atun, G. and Keceli, G. (2001), "Adsorption of strontium on illite", J. Radiaoanal. Nucl. Chem., 250(2), 323-328. https://doi.org/10.1023/A:1017960015760
  2. Cakir, P., Inan, S. and Altas, Y. (2014), "Investigation of strontium and uranium sorption onto zirconiumantimony oxide/polyacrylonitrile (Zr-Sb oxide/PAN) composite using experimental design", J. Hazard. Mater., 271, 108-119. https://doi.org/10.1016/j.jhazmat.2014.02.014
  3. Chaudry, M.A. and Ahmad, I. (1994), "Extraction and stripping study strontium ions across D2EHPA-TBP-Kerosene oil based supported liquid membrane", J. Radiaoanal. Nucl. Chem., 185(2), 369-385. https://doi.org/10.1007/BF02041309
  4. Chen, J.H., Chen, W.R., Gau, Y.Y. and Lin, C.H. (2003), "The preparation of di(2-ethylhexyl) phosphoric acid modified Amberlite 200 and its application in the separation of metal ions from sulfuric acid solution", React. Funct. Polym., 56(3), 175-188. https://doi.org/10.1016/S1381-5148(03)00056-7
  5. Chen, P.Y. (2007), "The assessment of removing strontium and cesium cations from aqueous solutions based on the combined methods of ionic liquid extraction and electrodeposition", Electrochimica Acta, 52(17), 5484-5492. https://doi.org/10.1016/j.electacta.2007.03.010
  6. Ding, S.D., Yang, T., Liu, N. and Zhang, L. (2010), "Extraction behavior of strontium from nitric acid solution with N,N, N',N'-tetraisobutyl diglycolamide", J. Iran. Chem. Soc., 7, 545-553 https://doi.org/10.1007/BF03246042
  7. Greve, K., Nielsen, E. and Ladefoged, O. (2007), "Evaluation of health hazards by exposure to strontium in drinking water", Toxicol. Lett., 172(S210).
  8. Grynpas, M.D., Hamilton, E., Cheung, R., Tsouderos, Y., Deloffre, P., Hott, M. and Marie, P.J. (1996), "Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect", Bone, 18(3), 253-259. https://doi.org/10.1016/8756-3282(95)00484-X
  9. Hafizi, M., Abolghasemi, H., Moradi, M. and Milani, S.A. (2011), "Strontium adsorption from sulfuric acid solution by Dowex 50W-X resins", Chin. J. Chem. Eng., 19(2), 267-272. https://doi.org/10.1016/S1004-9541(11)60164-X
  10. Heilgeist, M. (2000), "Use of extraction chromatography, ion chromatography and liquid scintillation spectrometry for rapid determination of strontium-89 and strontium-90 in food in cases of increased release of radionuclides", J. Radiaoanal. Nucl. Chem., 245(2), 249-254. https://doi.org/10.1023/A:1006777416037
  11. Jeong, S.K. and Ju, C.S. (2002), "Extraction of strontium ion from sea water by contained liquid membrane permeator", Kor. J. Chem. Eng., 19(1), 93-98. https://doi.org/10.1007/BF02706880
  12. Kocherginsky, N.M., Zhang, Y.K. and Stucki, J.W. (2002), "D2EHPA based strontium removal from strongly alkaline nuclear waste", Desalination, 144(1-3), 267-272. https://doi.org/10.1016/S0011-9164(02)00326-0
  13. Makrlik, E., Vanura, P., Selucky, P. and Spichal, Z.K. (2010), "Solvent extraction of calcium and strontium into nitrobenzene by using a synergistic mixture of hydrogen dicarbollylcobaltate and 2,6-(diphenylphosphino) pyridine dioxide", Acta Chimica Slovenica, 58, 860-865.
  14. Mazhar, M. (2009), "Potassium iron (III) hexacyanoferrate (II) supported on polymethylmethacrylate ionexchanger for removal of strontium (II)", J. Radiaoanal. Nucl. Chem., 281(3), 393-403. https://doi.org/10.1007/s10967-009-0008-8
  15. Nielsen, S.P. (2004), "The biological role of strontium", Bone, 35(2), 583-588. https://doi.org/10.1016/j.bone.2004.04.026
  16. Peppard, D.F., Ferraro, J.R. and Mason, G.W. (1985), "Hydrogen bonding in organophosphoric acids", J. Inorg. Nucl. Chem., 7(3), 231-244. https://doi.org/10.1016/0022-1902(58)80075-5
  17. Prohl, G., Ehlken, S., Fiedler, I., Kirchner, G., Klemt, E. and Zibold, G. (2006), "Ecological half-lives of 90Sr and 137Cs in terrestrial and aquatic ecosystems", J. Environ. Radioact., 91(1-2), 41-72 https://doi.org/10.1016/j.jenvrad.2006.08.004
  18. Puziy, A.M. (1998), "Cesium and strontium exchange by the framework potassium titanium silicate K3HTi404 (SiO4)3"4H20", J. Radiaoanal. Nucl. Chem., 237(1-2), 73-79. https://doi.org/10.1007/BF02386665
  19. Raut, D.R., Mohapatra, P.K. and Manchanda, V.K. (2012), "A highly efficient supported liquid membrane system for selective strontium separation leading to radioactive waste remediation", J. Membr. Sci., 390, 76-83.
  20. Schulz, W.W., Mendel, J.E. and Richardson, G.L. (1963), "Solvent extraction recovery and purification of strontium-90", Ind. Eng. Chem. Proc. Des. Dev., 2(2)134-140. https://doi.org/10.1021/i260006a009
  21. Schutz, W.W. (1968), Effects of some Synergistic and Antagonistic Agents on HDEHP Extraction of Strontium (No. BNWL--759), Pacific Northwest Lab, Battelle-Northwest, Richland, Washington, D.C., U.S.A.
  22. Singh, K.K., Pathak, S.K., Kumar, M., Mahtele, A.K., Tripathi, S.C. and Bajaj, P.N. (2013), "Study of uranium sorption using D2EHPA-impregnated polymeric beads", J. Appl. Polym. Sci., 3355-3364
  23. Sivaiah, M.V., Venkatesan, K.A., Krishna, R.M., Sasidhar, P. and Murthy, G.S. (2005), "Ion exchange properties of strontium on in situ precipitated polyantimonic acid in amberlite XAD-7", Sep. Purif. Technol., 44(1), 1-9. https://doi.org/10.1016/j.seppur.2004.03.016
  24. Solecki, J. and Michalik, S. (2006), "Studies of 85Sr adsorption on grain fractions of soil", J. Radiaoanal. Nucl. Chem., 267(2), 271-278. https://doi.org/10.1007/s10967-006-0043-7
  25. Tripathi, A., Medvedev, D.G., Nyman, M. and Clearfield, A. (2003), "Clearfield Selectivity for Cs and Sr in Nb-substituted titanosilicate with sitinakite topology", J. Solid State Chem., 175(1), 72-83. https://doi.org/10.1016/S0022-4596(03)00145-2
  26. Ye, X., Liu, T., Li, Q., Liu, H. and Wu, Z. (2008), "Comparison of strontium and calcium adsorption onto composite magnetic particles derived from Fe3O4 and bis(trimethoxysilylpropyl)amine", Colloid. Surface. A Physicochem. Eng. Asp., 330(1), 21-27. https://doi.org/10.1016/j.colsurfa.2008.07.019
  27. Zhang, L., Zhou, J., Zhou, D. and Tang, Y. (1999), "Adsorption of cadmium and strontium on cellulose/alginic acid ion-exchange membrane", J. Membr. Sci., 162(1-2), 103-109. https://doi.org/10.1016/S0376-7388(99)00127-1

Cited by

  1. Low concentration cadmium removal using weathered sand of basalt vol.12, pp.2, 2017, https://doi.org/10.12989/mwt.2021.12.2.051