DOI QR코드

DOI QR Code

진도 울돌목의 조류 연직 프로파일 매개변수 분포 특성

Distribution Characteristics on the Parameters of Vertical Tidal Current Profile at Uldolmok, Jindo, Korea

  • 고동휘 (한국해양과학기술원 연안공학연구본부) ;
  • 박진순 (한국해양과학기술원 연안공학연구본부) ;
  • 조홍연 (한국해양과학기술원 해양자료과학실) ;
  • 박준석 (한국해양과학기술원 연안공학연구본부) ;
  • 이기섭 (한국해양과학기술원 해양자료과학실) ;
  • 최혁진 ((주)해안해양기술)
  • Ko, Dong Hui (Coastal Development Research Center, Division of Coastal Engineering, Korea Institute of Ocean Science and Technology) ;
  • Park, Jin Soon (Coastal Development Research Center, Division of Coastal Engineering, Korea Institute of Ocean Science and Technology) ;
  • Cho, Hong Yeon (Corresponding author: Hong Yeon Cho, Ocean Data Science Division, Korea Institute of Ocean Science and Technology) ;
  • Park, Jun Seok (Coastal Development Research Center, Division of Coastal Engineering, Korea Institute of Ocean Science and Technology) ;
  • Lee, Gi Seop (Corresponding author: Hong Yeon Cho, Ocean Data Science Division, Korea Institute of Ocean Science and Technology) ;
  • Choi, Hyukjin (Coast and Ocean Technology Research Institute)
  • 투고 : 2017.11.16
  • 심사 : 2017.12.04
  • 발행 : 2017.12.31

초록

일반적으로 멱법칙과 대수함수 프로파일은 유속 연직 프로파일 모델로 많이 사용된다. 그러나 해역특성에 따라 모델별 매개변수의 값들이 상이하므로 실제 관측치를 통해 이들 값을 추정할 필요가 있다. 본 연구에서는 울돌목 해역에서 관측한 30분 평균 유속자료를 이용하여 창 낙조 시 멱법칙의 고도분포지수(n) 값과 대수함수 프로파일의 마찰속도($u^*$)와 조도길이($z_0$)를 추정하였다. 또한, 수심평균유속과 매개변수간의 상관관계를 분석하였으며, 관측치와의 오차분석을 수행하였다. 그 결과, power law의 고도분포지수(n)는 창조 시에는 평균 10.75, 낙조 시에는 평균 9.3의 고도분포지수 값을 가지는 것으로 나타났다. 한편, 대수함수 프로파일의 $u^*$는 창 낙조 시, 0.084 m/s와 0.105 m/s로 각각 추정되었으며, $z_0$는 0.004 m, 0.006 m로 각각 추정되었다.

In general, the power law and logarithmic profile are commonly used as flow vertical velocity profile model. However, since the parameters of profile vary with characteristics of coastal environment, it is necessary to estimate these values from measured data using regression analysis. In this paper, we estimated the power law exponent (n), friction velocity ($u^*$) and roughness length ($z_0$) of logarithmic profile by analyzing measured tidal current data that are averaged at a interval of 30 min. In the results of analysis, power law exponent (n) was estimated to be about 10.75 during flood and about 9.3 during ebb. Meanwhile, $u^*$ of logarithmic profile was estimated to be about 0.084 m/s, 0.105 m/s during flood and ebb, respectively. Also, $z_0$ was estimated to be 0.004 m and 0.006 m, respectively.

키워드

참고문헌

  1. Bergeron, N.E. and Abrahams, A.D. (1992). Estimating shear velocity and roughness length from velocity profiles. Water Resources Research, 28(8), 2155-2158. https://doi.org/10.1029/92WR00897
  2. CBS (2011). http://www.cbc.ca/news/canada/nova-scotia/failedtidal-turbine-explained-at-symposium-1.1075510.
  3. Dyer, K.R. (1986). Coastal and Estuarine Sediment Dynamics. John Wiley & Sons, Ltd, Chichester, UK, 342.
  4. EMEC. (2009). Assessment of tidal energy resource : marine renewable energy guides. EMEC.
  5. Hagerman, G., Polagye, B., Bedard, R. and Previsic, M. (2006). Methodology for Estimating Tidal Current Energy Resources and Power Production by Tidal In-stream Energy Conversion (TISEC) Devices, EPRI North American Tidal In Stream Power Feasibility Demonstration Project.
  6. Hill, A.E. (1991). Vertical migration in tidal currents. Mar. Ecol. Prog. Ser., 75, 39-54. https://doi.org/10.3354/meps075039
  7. Hsu, S.A. (2013). Coastal meteorology. Academic Press Inc. 260.
  8. Kang, S.K., Yum, K.D., Lee, K.S. and Park, J.S. (2005). Coastalphysical oceanographic aspects in relation to the tidal current power generation in the Uldolmok. Journal of New and Renewable Energy, 1(2), 73-78 (in Korean).
  9. Ko, D.H., Jeong, S.T., Cho, H., Kim, J.Y. and Kang, K.S. (2012). Error analysis on the offshore wind speed estimation using HeMOSU-1 data. Journal of Korean Society of Coastal and Ocean Engineers, 24(5), 326-332 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.5.326
  10. Lewis, M., Neill, S.P., Robins, P., Hashemi, M.R. and Ward, S. (2017). Characteristics of the velocity profile at tidal-stream energy sites. Renewable Energy, 114, 258-272. https://doi.org/10.1016/j.renene.2017.03.096
  11. Lippmann, T.C., Irish, J. and Hunt, J. (2013). Observations of the vertical structure of tidal cuirrents in two inlets. Journal of Coastal Research, Special Issue, 65, 1-6. https://doi.org/10.2112/SI65-001.1
  12. Lozovatsky, I., Liu, Z., Fernando, H., Armengol, J. and Roget, E. (2012). Shallow water tidal currents in close proximity to the seafloor and boundary-induced turbulence. Ocean dynamics, 62, 177-191. https://doi.org/10.1007/s10236-011-0495-3
  13. Lozovatsky, I.D., Liu, Z., Wei, H. and Fernando, H.J.S. (2008a). Tides and mixing in the northwestern East China Sea part I: rotating and reversing flows. Cont. Shelf. Res., 28, 318-337. https://doi.org/10.1016/j.csr.2007.08.006
  14. Lozovatsky, I.D., Liu, Z., Wei, H. and Fernando, H.J.S. (2008b). Tides and mixing in the northwestern East China Sea Part II: near-bottom turbulence. Cont. Shelf. Res., 28, 338-350. https://doi.org/10.1016/j.csr.2007.08.007
  15. MLTMA (2011). Development of Utilization Technique for Tidal Current Energy, Ministry of land, transport and maritime affairs. Korea (in Korean).
  16. Mofjeld, H.O., Schumacher, J.D. and Pashinski, D.J. (1984). Theoretical and observed profiles of tidal currents at tow sites on the southeastern Bering sea shelf. NOAA technical memorandum ERL PMEL-62, NOAA, USA.
  17. MOF (2015). Midium- and Long-term Development Plan for Marine Energy ('15-'25), proposal. Ministry of oceans and fisheries. Korea (in Korean).
  18. Prandle, D. (1982). The vertical structure of tidal currents and other oscillatory flows. Cont. Shelf. Res., 1(2), 191-207. https://doi.org/10.1016/0278-4343(82)90004-8
  19. Roh, E.G. (2001). Turbulence. Sigmapress. 131-133 (in Korean).
  20. Soulsby, R.L. (1983). The bottom boundary layer of shelf seas, in Physical Oceanography of Coastal and Shelf Seas, ed. by Johns, B. Elsevier, Amsterdam, The Netherlands, Chapter 5.
  21. Soulsby, R. (1997). Dynamics of Marine sands: a manual for practical applications. Thomas Telford, 1997.
  22. Taylor, J.R. and Sarkar, S. (2008). Stratification effects in a bottom ekman layer. American Meteorological Society, 2535-2555.