DOI QR코드

DOI QR Code

냉동·공조기 배관내 스케일 자동제거장치의 효과

Effect of Aotomatic Scale Removal System for Piping in Refrigeration & Air Conditioning System

  • 김종열 (동명대학교 냉동공조공학과)
  • Kim, Jong-Ryeol (Department of Refrigeration & Air Conditioning Engineering)
  • 투고 : 2017.11.07
  • 심사 : 2017.12.02
  • 발행 : 2017.12.30

초록

본 연구는 냉동공조용 열교환기 내 스케일 형성으로 열전달 과정에서 열저항으로 작용하여 냉동공조시스템의 냉각성능이 떨어져 이를 해결하기 위해 전기분해 원리를 이용하여 배관 내 스케일을 자동 제거하는 시스템을 개발하여 그 성능을 실험을 통해 확인하고자 한다. 이전까지는 배관 내 스케일을 2~3년에 한번씩 브러시나 분사 노즐에 의해 기계적으로 배관 내를 청소를 하거나 화학약품을 이용하여 세관하였다. 이러한 세관은 시간이 경과하면 또 관이 오염되어 전열성능이 떨어지고 냉각장치의 운전을 정지하여 반복해야 하는 여러 가지 문제점을 안고 있었다. 따라서 시스템의 정지없이 전기분해 원리를 이용하여 만들어진 처리수를 순환시킴으로서 스케일의 원인물질은 Ca, Mg, $SiO_2$를 고형물 형태로 석출시켜 배관계 외부로 배출시킴으로서 배관내 스케일 발생을 차단하고 기 형성된 스케일을 제거하여 배관의 전열 성능을 유지하고자 하는 것이다. 실험한 결과, 새 배관의 열전달율을 100으로 기준할 경우, 스케일이 형성된 배관의 열전달율은 86.66%이었으며, 스케일이 형성된 배관을 1개월 동안 처리수를 가동했을 경우 열전달율은 90.5%의 수준까지 회복되었으며, 2개월간 운전한 경우 97.86%의 수준까지, 3개월 운전했을 경우 98.72%까지 열전달율이 회복되었다. 비교적 짧은 실험기간이지만 배관내 형성된 스케일의 제거효과를 파악하였으며, 전열성능에도 영향을 미치고 있음을 확인하였다.

In this study, we developed a system that automatically removes the scale in the piping by using electrolysis principle in order to solve the cooling performance of the refrigeration and air conditioning system by acting as heat resistance in the heat transfer process by forming the scale in the heat exchanger for refrigeration air conditioning. We want to check the performance through experiments. Therefore, by circulating the treated water using the principle of electrolysis without stopping the system, Ca, Mg and $SiO_2$ are precipitated in the form of solids and discharged to the outside of the pipe system, thereby preventing scale formation in the pipe and removing the scale. Thereby maintaining the heat transfer performance of the pipe. As a result of the experiment, the heat transfer rate of the scaled pipe was 86.66% when the heat transfer rate of the new pipe was 100, and the heat transfer rate was recovered to 90.5% when the scaled pipe was operated for 1 month. The heat transfer rate recovered to 97.86% when driving for two months and to 98.72% for three months. It was confirmed that the scaling effect of the scale formed in the piping was understood in a relatively short experiment period, and the heat transfer performance was also influenced.

키워드

참고문헌

  1. M.J. Jang, I.W. Sung, "The Effects of Scale Growth Inhibition on Water Pipe using Frequency Driver", Journal of Korean Society of Environmental Engineers, Vol.33, No.4 pp.258-266, (2011). https://doi.org/10.4491/KSEE.2011.33.4.258
  2. K.H, Kim, "Principle and application of electron field treatment technology for prevent corrosion and scale in pipes", The Society Of Air-Conditioning And Refrigerating Engineers Of Korea, pp.991-996, (2009).
  3. C.S.Cho, H. J. Shin, J.Y. Kim, "Application of the High Pressure Piping Flushing System", The Society Of Air-Conditioning And Refrigerating Engineers Of Korea., pp.784-788, (2000).
  4. S.Y. Lee, H.J. Choi, E.S. Jang, Y.B. Lee, K.C. Choi, J.C, Lee, "Development of Hybrid Water Activator Water Treatment Device for escaling". The Korean Society of Manufacturing Process Engineers. pp.13-13 (2015).
  5. J.H. Lee, J.Y. Jung, Y.B. Park, J.H. Bae, "Development of Chemical Cleaning Agents for Cleaning Indoor Water Supply Pipes". The Korean Society Of Clean Technology. Vol.16, No.4, pp.162-171 (2010).
  6. S.K. Sung, S.H. Suh, "Effect of Fouling Mitigation for Ceramic Ball in Cooling Water System of Heat Exchanger", KSME B, Vol.31, No.4, pp.330-334, (2007). https://doi.org/10.3795/KSME-B.2007.31.4.330
  7. K. M. Hwang , E. J. Tae, "A Study on the Development of Fouling Analysis Technique for Shell-and-Tube Heat Exchangers", KSME B, Vol.28, No.2, pp.167-173, (2004). https://doi.org/10.3795/KSME-B.2004.28.2.167
  8. S. M., Beak, W. J. Choi, J. I. Yoon, W. S. Seol, 2010, "Characteristics of Decrease Effect in Fouling on Plate Heat Exchanger Using Air Bubble", KSPSE, Vol.14, No.1, pp.22-26, (2010).
  9. Genic, S. B., Jacimovic, B. M., Mandic, D., and Petrovic, D., "Experimental determination of fouling factor on plate heat exchangers in district heating system", Energy and Buildings, 50, pp.204-211, (2012). https://doi.org/10.1016/j.enbuild.2012.03.039
  10. Thonon, B., Grandgeorge, S. and Jallut, C., "Effect of geometry and flow conditions on particulate fouling in plate heat exchangers", Heat Transfer Engineering, Vol.20, No.3, pp.12-24, (1999). https://doi.org/10.1080/014576399271385
  11. Q. Yang, J. Ding, and Z. Shen, "Investigation on fouling behaviors of low-energy surface and fouling fractal characteristics", Chemical Engineering Science, Vol.55, No.4, pp.797-805, (2000). https://doi.org/10.1016/S0009-2509(99)00394-2
  12. W. T. Kim, Y. I. Cho, "Experimental study of the crystal growth behavior of $CaCO_3$ fouling using a microscope", Experimental Heat Transfer, Vol.13, No.2, pp.153-161, (2000). https://doi.org/10.1080/089161500269526
  13. N. Andritsos, A. J. Karabelas, "Calcium carbonate scaling in a plate heat exchanger in the presence of particles", International Journal of Heat and Mass Transfer, Vol.46, No.24, pp.4613-4627, (2003). https://doi.org/10.1016/S0017-9310(03)00308-9
  14. J. M. Jeon, E. C. Lee, H. Kang, Y. C. Kim, "The Fouling Characteristics of Plate Heat Exchangers with Geometric and Operating Parameters", Korean Journal of Air conditioning and Refrigeration Engineering, Vol.26, No.4, pp.163-168, (2014). https://doi.org/10.6110/KJACR.2014.26.4.163
  15. W. T. Kim, J. H. Jeong, "Study on Fouling Phenomena and Reduction Methods for Heat Exchangers in Nuclear Power Plants", The Korean Society of Mechanical Engineers, pp.94-100, (2010).
  16. W. J. Kim, N. N, Kim, "Study on Heat Transfer and Fouling of Flow Boiling Systems using Oxidized Graphene Nanofluid", The Korean Solar Energy Society, Vo.36, No.3, pp.63-74, (2016).