DOI QR코드

DOI QR Code

Application of the second generation of electronic nose and its useful possibility in food industry

식품산업 분야에서의 2세대 전자코의 응용과 활용가능성

  • Lee, Soo Jin (Department of Food Science and Technology, Seoul Women's University) ;
  • Noh, Bong Soo (Department of Food Science and Technology, Seoul Women's University)
  • 이수진 (서울여자대학교 식품공학과) ;
  • 노봉수 (서울여자대학교 식품공학과)
  • Received : 2017.11.20
  • Accepted : 2017.12.16
  • Published : 2017.12.31

Abstract

Applications of the second generation of electronic nose in various field such as new food product development, slight rancidity during induction period, classification of similar products, discovery of odor, and odor reduction were reviewed. The possibilities of using electronic noses in areas that are difficult to analyze so far would be done in the future. It is believed that the utility value is expanded not only in the food industry but also in other areas.

Keywords

References

  1. Hodgkin D. Simmonds D. Sensory technology for flavor analysis. Cereal Foods World 40: 186-191 (1995)
  2. Chou UD. Use and development of sensation sensor. Bulletin Food Technol. 8: 122-131 (1995)
  3. Fisk ID. Kettle A. Hofmeister S. Virdie A. Kenny JS. Discrimination of roast and ground coffee aroma. Flavour 1: 14 (2012) https://doi.org/10.1186/2044-7248-1-14
  4. Shilbayeh NF. Iskandarani MZ. Quality control of coffee using an electronic nose system. Am. J. Appl. Sci. 1: 129-135 (2004) https://doi.org/10.3844/ajassp.2004.129.135
  5. Michishita T. Akiyama M. Hirano Y. Ikeda M. Sagara Y. Araki T. Gas chromatography/olfactometry and electronic nose analyses of retronasal aroma of espresso and correlation with sensory evaluation by an artificial neural network. J. Food Sci. 75: S477-S489 (2010) https://doi.org/10.1111/j.1750-3841.2010.01828.x
  6. Baldwin EA. Bai J. Plotto A. Dea S. Electronic noses and tongues: Applications for the food and pharmaceutical industries. Sensors 11: 4744-4766 (2011) https://doi.org/10.3390/s110504744
  7. Vietoris V. Zajac P. Capla J. MendelovaA. KrizanovaK. BenesovaL. Comparison of coffee species by sensory panel and electronic nose. J. Microbio. Biotech. Food Sci. 5: 234-237 (2015)
  8. Fu J. Li G. Qin Y. Freeman WJ. A pattern recognition method for electronic noses based on an olfactory neural network. Sensor Actuat. B: Chem. 125: 489-497 (2007) https://doi.org/10.1016/j.snb.2007.02.058
  9. Fu J. Huang C. Xing J. Zheng J. Pattern classification using an olfactory model with PCA feature selection in electronic noses: Study and Application. Sensors. 12: 2818-2830 (2012) https://doi.org/10.3390/s120302818
  10. Kim SR. Flavor analysis of foods by electronic nose. Food Sci. Ind. 30: 126-133 (1997)
  11. Noh BS. Analysis of volatile compounds using electronic nose and its application in food industry. Korean J. Food Sci. Technol. 37: 1048-1064 (2005)
  12. Stetter JR. Findlay MW. Schroeder KM. Yue C. Penrose WR. Quality classification of grain using a sensor array and pattern recognition, Anal. Chim. Acta 284: 1-11 (1993) https://doi.org/10.1016/0003-2670(93)80001-2
  13. Bartlett PN. Elliott JM. Gardner JW. Electronic noses and their application in the food industry. Food Technol. 51: 44-48 (1997)
  14. Schaller E. Bosset JO. Escher F. 'Electronic Noses' and their application to food. Lebensm.-Wiss. u.-Technol. 31: 305-316 (1998) https://doi.org/10.1006/fstl.1998.0376
  15. Bourrounet B. Talou T. Gaset A. Application of a multigas sensor device in the meat industry for boar-taint detection. Sensor Actuat. B 26-27: 250-254 (1995)
  16. Capelli L. Sironi S. Rosso RD. Electronic noses for environmental monitoring applications. Sensors 14: 19979-20007 (2014) https://doi.org/10.3390/s141119979
  17. Baby RE. Cabezas M. de Reca ENW. Electronic nose: a useful tool for monitoring environmental contamination. Sensor Actuat. B: Chemical 69: 214-218 (2000) https://doi.org/10.1016/S0925-4005(00)00491-3
  18. Tang K-T. Chiu S-W. Pan C-H. Hsieh H-Y. Liang Y-S. Liu S-C. Development of a portable electronic nose system for the detection and classification of fruity odors. Sensors 10: 9179-9193 (2010) https://doi.org/10.3390/s101009179
  19. Kiani S. Minaei S.Ghasemi-Varnamkhasti M. Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: A review. J. Appl. Res. Medicinal Aromatic Plants 3: 1-9 (2016) https://doi.org/10.1016/j.jarmap.2015.12.002
  20. Byun H-G. Yu JB. Huh JS. Lim J-O. Exhaled breath analysis system based on electronic nose techniques applicable to lung diseases. Hanyang Med. Rev. 34: 125-129 (2014) https://doi.org/10.7599/hmr.2014.34.3.125
  21. Montuschi P. Mores N. TroveA. Mondino C. Barnes PJ. The Electronic nose in respiratory medicine. Respiration 85: 72-84 (2013) https://doi.org/10.1159/000340044
  22. https://en.wikipedia.org/wiki/Electronic_nose
  23. Askim JR. Morteza M. Suslick KS. Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem. Soc. Rev. 42: 8649-8682 (2013) https://doi.org/10.1039/c3cs60179j
  24. Musto CJ. Lim SH. Suslick KS. Colorimetric detection and identification of natural and artificial sweeteners. Anal. Chem. 81: 6526-6533 (2009) https://doi.org/10.1021/ac901019g
  25. Feng L. Musto CJ. Kemling JW. Lim SH. Suslick KS. : A colorimetric sensor array for identification of toxic gases below permissible exposure limits. Chem. Commun. 46: 2037-2039 (2010) https://doi.org/10.1039/b926848k
  26. Ahn M-W. Park K-S. Heo J-H. Park J-G. Kim D-W. Choi K. Lee J-H. Hong S-H. Gas sensing properties of defect-controlled ZnOnanowire gas sensor. Appl. Phys. Lett. 93: 263103-1-263103-3 (2008) https://doi.org/10.1063/1.3046726
  27. Lee JK. Design and implementation of multi-gas recognition algorithm for low power driving with wireless electronic nose. MS thesis, Kyungil University (2016)
  28. Hong HK. Kwon CH. Yun DH. Kim S-R. Lee K. Kim IS. Sung YK. Fabrication and characterization of portable electronic nose system for identification of CO/HC gases. J, Sen. Sci. Technol. 6: 47-53 (1997)
  29. Choi IH. The study on the fabrication and sensing characteristics of semiconductor gas sensor array for the electronic nose system. MS thesis, Dae Jeon University (2006)
  30. Lee KC. A study on SnO2 thin film gas sensor arrays for the electronic nose system. MS thesis, Chonnam National University (2001)
  31. Hwang YW. Moon J-Y. Baek S-R. Analysis of the relationship between odor sensor and the air dilution olfactory method in industrial complex odor. J. Korean Soc. Odor Res. Eng. 11: 209-218 (2004)
  32. Dong H. Kim KH. Han K-Y. Choi JY. Noh BS. Effect of various light emitting diode irradiation on volatile profiles of perilla oil using mass spectrometry-based electronic nose. Food Sci. Biotechnol. 24: 481-487 (2015) https://doi.org/10.1007/s10068-015-0063-6
  33. https://www.google.co.kr/search?source=hp&ei=3R5DWuv3IMzz8QX0zauACg&q=%28electronic+nose%29+and+%28review+paper%29+and%28food%29&oq=%28electronic+nose%29+and+%28review+paper%29+and%28food%29&gs_l=psy-ab.3...5571.39497.0.39775.71.54.10.0.0.0.2434.8374.6j35j3j9-1.45.0....0...1c.1.64.psy-ab..17.36.6479.0..0j0i30k1j0i19k1j0i30i19k1j0i13i30k1j0i13i10i30k1j0i10i30k1j0i13i30i19k1j0i8i13i30k1j33i160k1j33i21k1.0.lf4Peh0We_A
  34. Noh BS. Quality assessment and flavor analysis of Jeju beer for new product development. Final report of Jeju Industry-leading Broadband Economies Supporters, April, 30th (2012)
  35. Kim KH. Park SJ. Kim JE. Dong H. Park IS. Lee JH. Hyun SY, Noh BS. Assessment of physicochemical characteristics among different types of pale ale beer. Korean J. Food Sci. Technol. 45: 142-147 (2013) https://doi.org/10.9721/KJFST.2013.45.2.142
  36. Mohapatra P. Cox N. Banerjee P. Development of flavor profile of pet food palatants using electronic nose and electronic tongue. 16th International Symposium on Olfaction and Electronic Nose, Abstract #31, June 28th-July 1st, Exhibition and Convention Centre, Dijon, France (2015)
  37. Cheli F. Bonetempo V. Dell'Orto V. E-nose and E-tongue: an analytical tool for quality control and management in the pet food industry. Sens. Transducers 213: 24-29 (2017)
  38. Shen N. Moizuddin S. Wilson L. Duvick S. White P. Pollak L. Relationship of electronic nose analyses and sensory evaluation of vegetable oils during storage. J. Am. Oil Chem. Soc. 78: 937-940 (2001) https://doi.org/10.1007/s11746-001-0367-z
  39. Kim KH. Hong EJ. Park SJ. Kang JW. Noh BS. Pattern recognition analysis for volatile compounds of the whole, skim, UHT-, HTST-, and LTLT- milk under LED irradiations. Korean J. Food Sci Ani. Resour. 31: 595-602 (2011)
  40. Kim KH. Park SJ. Noh BS. Comparison of volatile compounds from vegetable oils under light emitting diode irradiation using MSbased electronic nose. Food Sci. Biotechnol. 21: 1055-1063 (2012) https://doi.org/10.1007/s10068-012-0137-7
  41. Park IS. Choi DJ. Youn A-R. Lee Y-J. Kim Y-K. Kim M-H. Kim KH. Dong H. Han HJ. Noh BS. Effect of light emitting diode and fluorescent light on volatile profiles of soybean oil during storage. Korean J. Food Sci. Technol. 45: 763-769 (2013) https://doi.org/10.9721/KJFST.2013.45.6.763
  42. Choi JY. Han K-Y. Bang K-H. Noh BS. Discrimination analysis of the geographical origin of foods. Korean J. Food Sci. Technol. 44: 503-525 (2012) https://doi.org/10.9721/KJFST.2012.44.5.503
  43. Kim KH. Dong H. Han HJ. Lee YH. Moon JY. Bang K-H. Noh BS. Analysis of geographical origin of red ginseng extract using mass spectrometer-based electronic nose. Korean J. Food Sci. Technol. 45: 652-656 (2013) https://doi.org/10.9721/KJFST.2013.45.5.652
  44. Han HJ. Dong H. Noh BS. Discrimination of rice volatile compounds under different milling degrees and storage time using an electronic nose. Korean J. Food Sci. Technol. 48: 187-191 (2016) https://doi.org/10.9721/KJFST.2016.48.2.187
  45. Olafsdottir G. Nesvadba P. Natale CD. Careche M. Oehlenschlager J. Tryggvadottir SV. Schubring R. Kroeger M. Heia K. Esaiassen M. Macagnano A. Jorgensen BM. Multisensor for fish quality determination. Trends Food Sci. Technol. 15: 86-93 (2004) https://doi.org/10.1016/j.tifs.2003.08.006
  46. Olafsdottir G. Kristbergsson K. Electronic-nose technology : Application for quality evaluation in the fish industry. In Odors in the food industry. Nicolay X. (ed), pp.57-74, ISBN-13: 978-0387335100 Springer, Springer International Publishing AG. Dordrecht, Netherland (2006)
  47. Olafsdottir G. Martinsdottir E. Jonsson EH. Rapid gas sensor measurements to determine spoilage of capelin (Mallotus villosus). J. Agric. Food Chem. 45: 2654-2659 (1997) https://doi.org/10.1021/jf960953+
  48. Barbri NE. Amari A. Vinaixa M. Bouchikhi B. Correig X. Llobet E. Building of a metal oxide gas sensor-based electronic nose to assess the freshness of sardines under cold storage. Sensor Actuat. B. 128: 235-244 (2007) https://doi.org/10.1016/j.snb.2007.06.007
  49. Barbri NE. Llobet E. Bari NE. Correig X. Bouchikhi B. Application of a portable electronic nose system to assess the freshness of Moroccan sardines. Materi. Sci. Eng. C 28: 666-670(2008) https://doi.org/10.1016/j.msec.2007.10.056
  50. Gibson TD. Prosser O. Hulbert JN. Marshall RW. Corcoran P. Lowery P. Ruck-Keene EA. Heron S. Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose, Sensor Actuat. B 44: 413-422 (1997) https://doi.org/10.1016/S0925-4005(97)00235-9
  51. Tian X-Y. Cai Q. and Zhang YM. Rapid classification of hairtail fish and pork freshness using an electronic nose based on the PCA method. Sensors 12: 260-277 (2012)
  52. Zou Y. Wan H. Zhang X. Ha D. Wang P. Electronic nose and electronic tongue. In Bioinspired Smell and Taste Sensors. Wang P. Liu Q. Wu C. Hsia KJ. (eds), pp 19-44, Springer International Publishing AG. Dordrecht, Netherlands (2015)
  53. Wilson AD. Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 13: 2295-2348 (2013) https://doi.org/10.3390/s130202295
  54. Vallone S. Lloyd NW. Ebeler SE. Zakharov F. Fruit volatile analysis using an electronic nose. J. Vis. Exp. 61 : e3821, doi:10.3791/3821 (2012)
  55. Heinemann CLPH. Irudayaraj J. Detection of apple deterioration using an electronic nose and zNose. Trans. Am. Soc. Agri. Biol. Eng. 50: 1417-1425 (2007)
  56. Corrado DN. Manuela Z-S. Antonella M. Roberto P. Bernd H. Arnaldo D'A. Outer product analysis of electronic nose and visible spectra: application to the measurement of peach fruit characteristics. Anal. Chim. Acta 459: 107-117 (2002) https://doi.org/10.1016/S0003-2670(02)00107-1
  57. Defilippi BG. Juan WS. Valdes H. Moya-Leon MA. Infante R. Campos-Vargas, R. The aroma development during storage of Castlebrite apricots as evaluated by gas chromatography, electronic nose, and sensory analysis. Postharvest Biol Tech. 51: 212-219 (2009) https://doi.org/10.1016/j.postharvbio.2008.08.008
  58. Gu X. Sun Y. Tu K. Dong Q. Pan L. Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors. Scientific Reports 6: 38721 (2016) https://doi.org/10.1038/srep38721
  59. Papadopoulou OS. Panagou EZ. Mohareb FR. Nychas GE. Sensory and microbiological quality assessment of beef fillets using a portable electronic nose in tandem with support vector machine analysis. Food Res. Int. 50: 241-249 (2013) https://doi.org/10.1016/j.foodres.2012.10.020
  60. Hong XZ. Wang J. Hai Z. Discrimination and prediction of multiple beef freshness indexes based on electronic nose. Sensor Actuat. B: Chem. 161: 381-389 (2012) https://doi.org/10.1016/j.snb.2011.10.048
  61. Berna A. Metal oxide sensors for electronic noses and their application to food analysis. Sensors 10: 3882-3910 (2010) https://doi.org/10.3390/s100403882
  62. Vinaixa M. Vergara A. Duran C. Llobet E. Badia C. Fast detection of rancidity in potato crisps using e-noses based on mass spectrometry or gas sensors. Sensor Actuat. B 106: 67-75 (2005) https://doi.org/10.1016/j.snb.2004.05.038
  63. Kaushal A. Gupta P. Electronic nose evolution for food adulteration: A Review. International J. Eng. Develop. Res. 5: 108-112 (2017)
  64. Peris M. Escuder-Gilabert L. A 21st century technique for food control: Electronic noses. Anal. Chim. Acta 638: 1-15 (2009) https://doi.org/10.1016/j.aca.2009.02.009
  65. OAlafsdottir G. Hognadottir AA. Martinsdottir E. Jonsdottir H. Application of an electronic nose to predict total volatile bases in Capelin (Mallotus villosus) for fishmeal production. J. Agric. Food Chem. 48: 2353-2359 (2000) https://doi.org/10.1021/jf990322q
  66. Ramamoorthy HV. Mohamed SN. Devi DS. E-Nose and E-Tongue: Applications and advances in sensor technology. J. NanoSci. Nano-Tech. 2: 370-376 (2014)
  67. Han HJ. Park SW. Jung HY. Kim JS. Dong H. Noh BS. Analysis of off-flavor generated from a polyethylene terephthalate water bottles and caps by using an electronic nose. Korean J. Food Sci. Technol. 47: 425-430 (2015) https://doi.org/10.9721/KJFST.2015.47.4.425
  68. Noh BS. Oh SY. Kim SJ. Pattern analysis of volatile components for domestic and imported Angelica gigas Nakai using GC based on SAW sensor. Korean J. Food Sci. Technol. 35: 144-148 (2003)
  69. Oh SY. Noh BS. Pattern analysis of volatile components for domestic and imported Cnidium officinale using GC based on SAW sensor. Korean J. Food Sci. Technol. 35: 994-997 (2003)
  70. Cho YS. Noh BS. Quality evaluation of dried Laver (Porphyrayezoensis Ueda) using electronic nose based on metal oxide sensor or GC with SAW sensor during storage. Korean J. Food Sci. Technol. 34: 947-953 (2002)
  71. Gan HL. Man YBC. Tan CP. NorAini I. Nazimah SAH. Characterisation of vegetable oils by surface acoustic wave sensing electronic nose. Food Chem. 89: 507-518 (2005) https://doi.org/10.1016/j.foodchem.2004.03.005
  72. Marina AM. Man YBC. Amin I. Use of the SAW sensor electronic nose for detecting the adulteration of virgin coconut oil with RBD palm kernel olein. J. Am. Oil Chem. Soc. 87: 263-270 (2010) https://doi.org/10.1007/s11746-009-1492-2
  73. Suh HS. Kang HJ. Chung EH. Hwang IK. Application of GCSAW(Surface Acoustic Wave) electronic nose to classification of origins and blended commercial brands in roasted ground coffee beans. Korean J. Food Cookery Sci. 22: 299-306 (2006)
  74. https://www.alpha-mos.com/documentation
  75. Wisniewska P. Sliwinska M. Dymerski T. Wardencki W. Namiesnik J. Comparison of an electronic nose based on ultrafast gas chromatography, comprehensive two-dimensional gas chromatography, and sensory evaluation for an analysis of type of whisky. J. Chem. 2017: Article ID 2710104, 13 pages (2017)
  76. Youn AR. Noh BS. Prediction of the freshness for soybean curd by the electronic nose in the fluctuating temperature condition. Food Sci. Biotechnol. 14: 437-439 (2005)
  77. Park EY. Kim JH. Noh BS. Application of the electronic nose and artificial neural network system to quality of the stored soymilk. Food Sci. Biotechnol. 11: 20-323 (2002a)
  78. Park EY. Noh BS. Ko SH. Prediction of shelf life for soybean curd by the electronic nose and artificial neural network system. Food Sci. Biotechnol. 11: 245-251 (2002b)
  79. Kim MJ. Park J-H. Electric-nose/tongue and their applications. Food Ind. Nutri. 21: 15-18 (2016)
  80. Flambeau KJ. Lee W-J, Yoon J. Discrimination and geographical origin prediction of washed specialty Bourbon coffee from different coffee growing areas in Rwanda by using electronic nose and electronic tongue. Food Sci. Biotech. 26: 1245-1254 (2017) https://doi.org/10.1007/s10068-017-0168-1
  81. Korel F. Luzuriaga DA. Balaban MO. Objective quality assessment of raw tilapia (Oreochromis niloticus) fillets using electronic nose and machine vision. J Food Sci. 66: 1018-1024 (2001) https://doi.org/10.1111/j.1365-2621.2001.tb08228.x
  82. Haddi Z. Alami H. Bari NE. Tounsi M. Barhoumi H. Maaref A. Jaffrezic-Renault N. Bouchikhi B. Electronic nose and tongue combination for improved classification of Moroccan virgin olive oil profiles. Food Res. Int. 54: 1488-1498 (2013) https://doi.org/10.1016/j.foodres.2013.09.036
  83. Apetrei C. Apetrei IM. Villanueva S. de Saja J.A. Gutierrez-Rosales Rodriguez-Mendez FML. Combination of an e-nose, an e-tongue and an e-eye for the characterisation of olive oils with different degree of bitterness. Anal. Chim. Acta 663: 91-97 (2010) https://doi.org/10.1016/j.aca.2010.01.034
  84. Longobardi F. Casiello G. Ventrella A. Mazzilli V. Nardelli A. Sacco D. Catucci L. Agostiano A. Electronic nose and isotope ratio mass spectrometry in combination with chemometrics for the characterization of the geographical origin of Italian sweet cherries. Food Chem. 170: 90-96 (2015) https://doi.org/10.1016/j.foodchem.2014.08.057
  85. Banerjee R. Modak A. Mondal S. Tudu B. Bandyopadhyay R. Bhattacharyya N. Fusion of electronic nose and tongue response using fuzzy based approach for black tea classification. Procedia Technol. 10: 615-622 (2013) https://doi.org/10.1016/j.protcy.2013.12.402
  86. Rosa ARD. Leone F. Cheli F. Chiofalo V. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment : A review. J. Food Eng. 210: 62-75 (2017) https://doi.org/10.1016/j.jfoodeng.2017.04.024
  87. Gil-Sanchez L. Sotoa J. Martinez-Manez R. Garcia-Breijoa E. Ibanez J. Llobet E. A novel humid electronic nose combined with an electronic tongue for assessing deterioration of wine. Sensor Actuat. A 171: 152-158 (2011) https://doi.org/10.1016/j.sna.2011.08.006