DOI QR코드

DOI QR Code

Effects of Socheongryong-Tang, a Traditional Chinese Medicine, on Gastrointestinal Motility Disorders (Diabetic Models) in Mice

소청룡탕 추출물의 당뇨병 질환에서 위장관 운동 기능 개선에 관한 연구

  • Bae, Jinsoo (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University) ;
  • Kim, Iksung (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University) ;
  • Seo, Byoung-Do (Department of Physical Therapy, Kyungwoon University) ;
  • Kim, Byung Joo (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University)
  • 배진수 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 김익성 (부산대학교 한의학전문대학원 양생기능의학부) ;
  • 서병도 (경운대학교 물리치료학과) ;
  • 김병주 (부산대학교 한의학전문대학원 양생기능의학부)
  • Received : 2017.10.27
  • Accepted : 2017.12.01
  • Published : 2017.12.30

Abstract

Objectives: The purpose of this study was to investigate the effects of Socheongryong-tang, a traditional herbal medicine, on gastrointestinal (GI) motility disorders (inflammatory and diabetic models) in mice. Methods: The in vivo effects of Socheongryong-tang on GI motility were investigated by calculating percent intestinal transit rates (ITR) and gastric emptying (GE) values using Evans Blue and phenol red, respectively, in normal mice and in mice with experimentally induced GI motility dysfunction (GMD). GMD models were induced by acetic acid and streptozotocin. Results: In normal ICR mice, ITR and GE values were significantly and dose-dependently increased by the intragastric administration of Socheongryong-tang (0.0025~0.25 g/kg). The ITR values (%) of GMD mice were significantly lower than those of normal mice, and these reductions were significantly and dose-dependently inhibited by Socheongryong-tang. Conclusions: These results suggest that Socheongryong-tang is a good candidate for the development of a prokinetic agent that may prevent or alleviate GMD.

Keywords

References

  1. Hwang MW, Lee HJ, Song HJ, Kim BJ. Involvement of MAPKs and PLC pathways in modulation of pacemaking activity by So-Cheong-Ryong-Tang in interstitial cells of Cajal from murine small intestine. Sci World J. 2013 ; 2013 : 536350.
  2. Bai D. Traditional Chinese medicines and new drug development. Pure Appl Chem. 1993 ; 65(6) : 1103-12. https://doi.org/10.1351/pac199365061103
  3. Jung S, Cho SJ, Moon KI, Kim HW, Kim BY, Cho SI. Effects of Socheongryong-Tang on immunoglobulin production in asthmatic mice. Kor J Herbol. 2008 ; 23(1) : 23-8.
  4. Zuo Y, Zhu Z, Huang Y, Tao J, Li Z. Science of prescriptions. Nanjing : Library of Traditional Chinese Medicine. 2002 : 44-6.
  5. Ko E, Rho S, Cho C, Choi H, Ko S, Lee Y, et al. So-Cheong-Ryong-Tang, tradititional Korean medicine, suppresses Th2 lineage development. Biol Pharm Bull. 2004 ; 27(5) : 739-43. https://doi.org/10.1248/bpb.27.739
  6. Sakaguchi M, Iizuka A, Yuzurihara M, Ishige A, Komatsu Y, Matsumiya T, et al. Pharmacological characteristics of Shoseiryu-to, an antiallergic Kampo medicine without effects on histamine H1 receptors and muscarinic cholinergic system in the brain. Methods Find Exp Clin Pharmacol. 1996 ; 18(1) : 41-7.
  7. Kao ST, Lin CS, Hsieh CC, Hsieh WT, Lin JG. Effects of xiao-qing-long-tang (XQLT) on bronchoconstriction and airway eosinophil infiltration in ovalbumin-sensitized guinea pigs: in vivo and in vitro studies. Allergy. 2001 ; 56(12) : 1164-71. https://doi.org/10.1034/j.1398-9995.2001.00982.x
  8. Kao ST, Wang SD, Wang JY, Yu CK, Lei HY. The effect of Chinese herbal medicine, xiao-qing-long tang (XQLT), on allergen-induced bronchial inflammation in mite-sensitized mice. Allergy. 2000 ; 55(12) : 1127-33. https://doi.org/10.1034/j.1398-9995.2000.00728.x
  9. Ikeda Y, Kaneko A, Yamamoto M, Ishige A, Sasaki H. Possible involvement of suppression of Th2 differentiation in the antiallergic effect of Sho-seiryu-to in mice. Jpn J Pharmacol. 2002 ; 90(4) : 328-36. https://doi.org/10.1254/jjp.90.328
  10. Makino T, Sasaki SY, Ito Y, Kano Y. Pharmacological properties of traditional medicine: effects of Gyokuheifusan on murine antigen-specific antibody production. Biol Pharm Bull. 2005 ; 28(1) : 110-3. https://doi.org/10.1248/bpb.28.110
  11. Ko E, Rho S, Lee EJ, Seo YH, Cho C, Lee Y, et al. Traditional Korean medicine (SCRT) modulate Th1/Th2 specific cytokine production in mice CD4+ T cell. J Ethnopharmacol. 2004 ; 92(1) : 121-8. https://doi.org/10.1016/j.jep.2004.02.008
  12. Lee JS, Oh SY, Seo SH, Kim TS, Ma JY. Protective effect of Socheongryong-Tang on hydrogen peroxide-induced hepatotoxicity. Kor J Herbol. 2011 ; 26(4) : 133-7. https://doi.org/10.6116/KJH.2011.26.4.133
  13. Maisey A. A practical approach to gastrointestinal complications of diabetes. Diabetes Ther. 2016 ; 7(3) : 379-86. https://doi.org/10.1007/s13300-016-0182-y
  14. Camilleri M. Clinical practice: diabetic gastroparesis. N Engl J Med. 2007 ; 356 : 820-9. https://doi.org/10.1056/NEJMcp062614
  15. Bell RA, Jones-Vessey K, Summerson JH. Hospitalizations and outcomes for diabetic gastroparesis in North Carolina. South Med J. 2002 ; 95(11) : 1297-9. https://doi.org/10.1097/00007611-200295110-00014
  16. Maggie BC. Traditional Chinese medicine in the treatment of diabetes. Diabet Spectrum. 2001 ; 14(3) : 154-9. https://doi.org/10.2337/diaspect.14.3.154
  17. Hasler WL, Soudah HC, Dulai G, Owyang C. Mediation of hyperglycemia-evoked gastric slow-wave dysrhythmias by endogenous prostaglandins. Gastroenterology. 1995 ; 108(3) : 727-36. https://doi.org/10.1016/0016-5085(95)90445-X
  18. Kim BJ, Kim HW, Lee GS, Choi S, Jun JY, So I, et al. Poncirus trifoliate fruit modulates pacemaker activity in interstitial cells of Cajal from the murine small intestine. J Ethnopharmacol. 2013 ; 149(3) : 668-75. https://doi.org/10.1016/j.jep.2013.07.017
  19. Lee HT, Seo EK, Chung SJ, Shim CK. Prokinetic activity of an aqueous extract from dried immature fruit of Poncirus trifoliata (L.) Raf. J Ethnopharmacol. 2005 ; 102(2) : 131-6. https://doi.org/10.1016/j.jep.2005.05.052
  20. Lyu JH, Lee HT. Effects of dried Citrus unshiu peels on gastrointestinal motility in rodents. Arch Pharm Res. 2013 ; 36(5) : 641-8. https://doi.org/10.1007/s12272-013-0080-z
  21. Friese N, Chevalier E, Angel F, Pascaud X, Junien JL, Dahl SG, et al. Reversal by kappa-agonists of peritoneal irritation induced ileus and visceral pain in rats. Life Sci. 1997 ; 60(9) : 625-34. https://doi.org/10.1016/S0024-3205(96)00647-9
  22. Kim H, Kim I, Lee MC, Kim HJ, Lee GS, Kim H, et al. Effects of Hwangryunhaedok-tang on gastrointestinal motility function in mice. World J Gastroenterol. 2017 ; 23(15) : 2705-15. https://doi.org/10.3748/wjg.v23.i15.2705
  23. Lee MC, Ha W, Park J, Kim J, Jung Y, Kim BJ. Effects of Lizhong Tang on gastrointestinal motility in mice. World J Gastroenterol. 2016 ; 22(34) : 7778-86. https://doi.org/10.3748/wjg.v22.i34.7778
  24. Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature. 1995 ; 373(6512) : 347-9. https://doi.org/10.1038/373347a0
  25. Kim BJ, Nam JH, Kim KH, Joo M, Ha TS, Weon KY, et al. Characteristics of gintonin-mediated membrane depolarization of pacemaker activity in cultured interstitial cells of Cajal.Cell Physiol Biochem. 2014 ; 34(3) : 873-90. https://doi.org/10.1159/000366306
  26. Ahn TS, Kim DG, Hong NR, Park HS, Kim H, Ha KT, et al. Effects of Schisandra chinensis extract on gastrointestinal motility in mice. J Ethnopharmacol. 2015 ; 169 : 163-9. https://doi.org/10.1016/j.jep.2015.03.071
  27. Rhyu MR, Kim EY, Yoon BK, Lee YJ, Chen SN. Aqueous extract of Schizandra chinensis fruit causes endotheliumdependent and -independent relaxation of isolated rat thoracic aorta. Phytomedicine. 2006 ; 13(9-10) : 651-7. https://doi.org/10.1016/j.phymed.2006.02.003
  28. Kim BJ. Shengmaisan regulates pacemaker potentials in interstitial cells of cajal in mice. J Pharmacopunct. 2013 ; 16(4): 36-42. https://doi.org/10.3831/KPI.2013.16.025
  29. Kim JN, Song HJ, Lim B, Kwon YK, Kim BJ. Modulation of pacemaker potentials by pyungwi-san in interstitial cells of cajal from murine small intestine: pyungwi-san and interstitial cells of cajal. J Pharmacopunct. 2013 ; 16(1) : 43-9. https://doi.org/10.3831/KPI.2013.16.003
  30. Hwang MW, Ahn TS, Hong NR, Jeong HS, Jung MH, Ha KT, et al. Effects of traditional Chinese herbal medicine San-Huang- Xie-Xin-Tang on gastrointestinal motility in mice. World J Gastroenterol. 2015 ; 21(4) : 1117-24. https://doi.org/10.3748/wjg.v21.i4.1117
  31. Kim HJ, Kim BJ. Naringenin inhibits pacemaking activity in interstitial cells of Cajal from murine small intestine. Integr Med Res. 2017 ; 6(2) : 149-55. https://doi.org/10.1016/j.imr.2017.02.001
  32. Kim BJ, Lim HH, Yang DK, Jun JY, Chang IY, Park CS, et al. Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology. 2005 ; 129(5) : 1504-17. https://doi.org/10.1053/j.gastro.2005.08.016
  33. Hwang SJ, Blair PJ, Britton FC, O'Driscoll KE, Hennig G, Bayguinov YR, et al. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol. 2009 ; 587(Pt 20) : 4887-904. https://doi.org/10.1113/jphysiol.2009.176198
  34. Horowitz M, Harding PE, Maddox AF, Wishart JM, Akkermans LM, Chatterton BE, et al. Gastric and oesophageal emptying in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1989 ; 32(3) : 151-9. https://doi.org/10.1007/BF00265086
  35. Hebbard GS, Samson M, Andrews JM, Carman D, Tansell B, Sun WM, et al. Hyperglycemia affects gastric electrical rhythm and nausea during intraduodenal triglyceride infusion. Dig Dis Sci. 1997 ; 42(3) : 568-75. https://doi.org/10.1023/A:1018851227051
  36. Park HS, Jin CJ. Effects of diabetes mellitus on gastrointestinal motility. Konkuk J Med Sci. 2001 ; 11 : 21-7.
  37. Ward SM. Hyperplasia of interstitial cells of Cajal leads to rapid gastric emptying in diabetes. Gastroenterology. 2017 ; 153(2) : 350-2. https://doi.org/10.1053/j.gastro.2017.06.039
  38. Park KS, Cho KB, Hwang IS, Park JH, Jang BI, Kim KO, et al. Characterization of smooth muscle, enteric nerve, interstitial cells of Cajal, and fibroblast-like cells in the gastric musculature of patients with diabetes mellitus. World J Gastroenterol. 2016 ; 22(46) : 10131-9. https://doi.org/10.3748/wjg.v22.i46.10131
  39. Horowitz M, Fraser R. Disordered gastric motor function in diabetes mellitus. Diabetologia. 1994 ; 37(6) : 543-51. https://doi.org/10.1007/BF00403371
  40. Lee OY. Gastrointestinal motility modulating drugs. J Korean Med Assoc. 2009 ; 52(9) : 920-7. https://doi.org/10.5124/jkma.2009.52.9.920

Cited by

  1. 최근 10년간 한방비만학회지의 연구동향 분석: 2010-2019년 한방비만학회지 게재논문을 중심으로 vol.20, pp.2, 2017, https://doi.org/10.15429/jkomor.2020.20.2.149