DOI QR코드

DOI QR Code

Genotype-by-Environment Interaction for Stickiness of Rice Cakes Using Glutinous Rice Cultivars in Different Environments

찰벼의 찰기에 대한 유전적 효과와 환경의 상호작용

  • Yoon, Mi-Ra (National Institute Crop Science, Rural Development Administration) ;
  • Lee, Jeong-Heui (National Institute Crop Science, Rural Development Administration) ;
  • Cho, Jun-Hyun (National Institute Crop Science, Rural Development Administration) ;
  • Yang, Chang-Ihn (National Institute Crop Science, Rural Development Administration) ;
  • Lee, Jeom-Sig (National Institute Crop Science, Rural Development Administration) ;
  • Kwak, Jieun (National Institute Crop Science, Rural Development Administration) ;
  • Ahn, Eok-Keun (National Institute Crop Science, Rural Development Administration) ;
  • Kim, Mi-Jung (National Institute Crop Science, Rural Development Administration) ;
  • Kim, Sun-Lim (National Institute Crop Science, Rural Development Administration)
  • 윤미라 (농촌진흥청 국립식량과학원) ;
  • 이정희 (농촌진흥청 국립식량과학원) ;
  • 조준현 (농촌진흥청 국립식량과학원) ;
  • 양창인 (농촌진흥청 국립식량과학원) ;
  • 이점식 (농촌진흥청 국립식량과학원) ;
  • 곽지은 (농촌진흥청 국립식량과학원) ;
  • 안억근 (농촌진흥청 국립식량과학원) ;
  • 김미정 (농촌진흥청 국립식량과학원) ;
  • 김선림 (농촌진흥청 국립식량과학원)
  • Received : 2017.08.26
  • Accepted : 2017.09.14
  • Published : 2017.12.31

Abstract

The purpose of this study was to provide basic data on the genetic and environmental effects of stickiness in glutinous rice varieties. In our study, we analyzed the genotype-by-environment ($G{\times}E$) interactions of the stickiness using six glutinous rice varieties under six environmental conditions. AMMI (Additive Main Effects and Multiplicative Interaction) analysis results showed that genotype (variety, G), environment (cultivation region, E) and $G{\times}E$ interaction were highly significant (P < 0.001). Among all the variations of stickiness for glutinous rice varieties, the environmental effect was 24.5%, the genetic effect was 37.1%, and the $G{\times}E$ interaction effect was 28.9%. From the AMMI analysis, the IPCA1 scores of Aranghangchal (G6, IPCA1: 3.85) and Hwaseonchal (G4, IPCA1: -5.24) was lower than other varieties. On the other hand, the Sangjuchal (G1, IPCA1: -61.23) and Boseogchal (G2, IPCA1: 41.21) were highly affected by environmental effects. In this study, there were large differences in stickiness according to region of cultivation. In the future, it is considered that a precise study should be carried out on the environmental factors that may increase the stickiness of glutinous rice varieties.

본 연구의 목적은 찰벼의 찰기에 대한 유전적 효과와 환경적 변이에 대한 기초자료를 제공하기 위해 수행하였다. 이를 위해 6개 환경 조건에서 6종 찰벼 품종을 이용하여 찰기에 대한 유전자와 환경의 (Genotype-by-Environment, $G{\times}E$) 상호작용 분석을 하였다. AMMI 분석모델에 의한 환경(재배지역, E), 유전자(품종, G), 유전자와 환경 상호 작용($G{\times}E$) 효과 모두에서 고도의 유의성이 있었다(P<0.001). 찰기에 대한 전체 변이중에서 환경효과는 24.5%, 유전적 효과는 37.1%, 상호작용 효과는 28.9%이었다. 유전자와 환경의 상호작용 분석에서 아랑향찰(G6, IPCA1: 3.85) 및 화선찰(G4, IPCA: -5.24)는 다른 품종보다 IPCA1 값이 낮아 환경에 대한 상호작용 효과가 낮았고, 유전자 효과가 높은 품종들이었다. 반면, 상주찰(G1, IPCA1: -61.23) 및 보석찰(G2, IPCA1: 41.21)은 IPCA1 값이 높아 환경의 효과에 의해 영향을 크게 받는 품종이었다. 따라서 이들 품종들은 환경 특이적 특성을 나타낸다고 할 수 있다. 이상의 본 시험의 결과 찰벼 품종을 이용한 찰떡의 찰기는 지역에 따라 달라짐을 보여주는 결과이다. 따라서 찰벼의 품종 육성 단계에서 지역별 찹쌀 수량, 병해충 등 재배 안정성 뿐만 아니라 찰벼의 이용목적인 찰기에 대한 안정성도 검토가 필요할 것이다. 더불어 밥쌀용 품종의 식미를 높이기 위한 적합한 환경조건에 대한 선행 연구를 참고하여 찰벼의 찰기를 높일 수 있는 환경조건에 대한 연구가 수행되어야 할 것으로 사료된다.

Keywords

References

  1. Abakemal, D., H. Shimelis, and J. Derera. 2016. Genotype-by-environment interaction and yield stability of quality protein maize hybrids developed from tropical high land adapted inbred lines. Euphytica 209 : 7570-769.
  2. Balestre, M., R. Pinho, J. Soouza, and R. Oliverira. 2009. Genotypic stability and adaptability in tropical maize based on AMMI and GGE biplot analysis. Genet. Mol. Res. 8 : 1311-1322. https://doi.org/10.4238/vol8-4gmr658
  3. Choi, H. C. 2002. Current status and perspectives in varietal improvement of rice cultivars for high-quality and value added products. Korean J. Crop Sci. 47 : 15-32.
  4. Choi, K. J., T. S. Park, C. K. Lee, J. T. Kim, J. H. Kim, K. Y. Ha, W. H. Yang, C. K. Lee, K. S. Kwak, H. K. Park, J. K. Nam, J. I. Kim, G. J. Han, Y. S. Cho, Y. H. Park, S. W. Han, J. R. Kim, S. Y. Lee, H. G. Choi, S. H. Cho, H. G. Park, D. J. Ahn, W. K. Joung, S. I. Han, S. Y. Kim, K. C. Jang, S. H. Oh, W. D. Seo, J. E. Ra, J. Y. Kim, and H. W. Kang. 2011. Effect of temperature during grain filling stage on grain quality and taste of cooked rice in mid-late maturing rice varieties. Korean J. Crop Sci. 56 : 404-412. https://doi.org/10.7740/kjcs.2011.56.4.404
  5. Chun, A., J. H. Lee, J. S. Lee, M. R. Yoon, J. Kwak, M. J. Kim, and C. K. Lee. 2016. Variation on appearance and cooking characteristics of milled waxy rice with different moisture contents. J. Korean Soc. Int. Agric. 28 : 479-484. https://doi.org/10.12719/KSIA.2016.28.4.479
  6. Chung, H. J., H. S, Lim, and S. T. Lim. 2006. Effect of partial gelatinization and retrogradation on the enzymatic digestion of waxy rice starch. J. Cereal Sci. 43 : 353-359. https://doi.org/10.1016/j.jcs.2005.12.001
  7. Gauch, H. G. and R. W. Zobel. 1996. AMMI analyses of yield trials. In: Kang MS, Gauch HG (eds) Genotype by environment interaction. CRC Press. Boca Raton. pp. 85-122.
  8. International Rice Research Institute. PBTools. 2017. http://bbi.irri.org/products.
  9. Jeong, E. G., C. K. Lee, Y. H. Choi, J. T. Kim, S. Kim, and J. R. Son. 2008. Identification of chalkiness development of milled waxy rice grains with harvest times and the moisture contents. Korean J. Crop Sci. 53 : 58-63.
  10. Kempton. R. A. 1984. The use of the biplots in interpreting variety by environment interactions. J. Agric. Sci. 103 : 123-135. https://doi.org/10.1017/S0021859600043392
  11. Kim, D. S., J. Song, J. I. Lee, A. Chun, E. G. Jeong, J. T. Kim, O. S. Hur, S. L. Kim, and S. J. Suh. 2009. Rice quality characterization according to damaged low temperature in rice plant. Korean J. Crop Sci. 54 : 452-457.
  12. Lee, J. I., J. K. Kim, J. C. Shin, E. H. Kim, M. H. Lee, and Y. J. Oh. 1996. Effects of ripening temperature on quality appearance and chemical quality characteristics of rice grain. J. Agric. Sci. 38 : 1-9.
  13. Lee, J. S., J. H. Lee, M. R. Yoon, J. Kwak, Y. J. Mo, A. Chun, and C. K. Kim. 2013. Palatability and physicochemical properties in 2001 yield increased by 10% than normal level in 2000. Korean J. Crop Sci. 58 : 292-300. https://doi.org/10.7740/kjcs.2013.58.3.292
  14. Misra, R. C., S. Das, and M. C. Patnaik. 2009. AMMI model analysis of stability and adaptability of late duration finger millet (Eleusine coracana) genotypes. World Appl. Sci. J. 6 : 1650-1654.
  15. National Institute of Crop Science. 2003. Evaluate the quality and taste of rice. Rural Development Administration.
  16. Romagosa, I. and P. N. Fox. 1993. Genotype $\times$ environment interaction and adaptation. In : Hayward, M. D., Bosemark, N. O., Romagosa, I. (Eds.), Plant Breeding : Principles and Prospects. Chapman & Hall. London. pp. 373-390.
  17. Rozgard, F. and E. Farshadfar. 2014. Locating QTLs controlling genotypic stability in Rye using AMMI model and AMMI based stability statistics. J. Biodivers & Environ. Sci. 4 : 85-93.
  18. Rural Development Administration. 2012. Standard for research, survey and analysis of agricultural science technology. Suwon, Korea.
  19. Yang, C. I., S. J. Yang, Y. P. Jeoung, H. C. Choi, and Y. B. Shin. 2001. Genotype $\times$ Environment interaction of rice Yield in Multi-location Trials. Korean J. Crop Sci. 46 : 453-458.
  20. Yoon, M. R., J. S. Lee, J. Kwak, J. H. Lee, J. B. Chun, C. I. Yang, J. H. Cho, M. J. Kim, C. K. Lee, B. K. Kim, and W. H. Kim. 2015. Starch and pasting characteristics in relation to stickiness of rice cake using glutinous rice cultivars. Korean J. Breed. Sci. 47 : 199-208. https://doi.org/10.9787/KJBS.2015.47.3.199
  21. Zhong, L. J., F. M. Cheng, X. Wen, Z. X. Sun, and G. P. Zhang. 2005. The deterioration of eating and cooking quality caused by high temperature during grain filling in early-season indica rice cultivars. J. Agronomy & Crop Sci. 191 : 218-225. https://doi.org/10.1111/j.1439-037X.2005.00131.x
  22. Zobel, R. W., J. W. Madison, and H. G. Gauch. 1988. Statistical analysis of a yield trial. Agron. J. 80 : 388-393. https://doi.org/10.2134/agronj1988.00021962008000030002x