DOI QR코드

DOI QR Code

Heterometal-Coordinated Monomeric Concanavalin A at pH 7.5 from Canavalia ensiformis

  • Chung, Nam-Jin (Department of Crop Science and Biotechnology, Chonbuk National University) ;
  • Park, Yeo Reum (Department of Chemistry and Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Lee, Dong-Heon (Department of Chemistry and Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Oh, Sun-Young (Department of Neurology, Chonbuk National University Medical School) ;
  • Park, Jung Hee (Division of Biotechnology, Chonbuk National University) ;
  • Lee, Seung Jae (Department of Chemistry and Institute for Molecular Biology and Genetics, Chonbuk National University)
  • 투고 : 2017.09.26
  • 심사 : 2017.10.10
  • 발행 : 2017.12.28

초록

The structure of concanavalin A (ConA) has been studied intensively owing to its specific interactions with carbohydrates and its heterometal ($Ca^{2+}$ and $Mn^{2+}$) coordination. Most structures from X-ray crystallography have shown ConA as a dimer or tetramer, because the complex formation requires specific crystallization conditions. Here, we reported the monomeric structure of ConA with a resolution of $1.6{\AA}$, which revealed that metal coordination could trigger sugar-binding ability. The calcium coordination residue, Asn14, changed the orientation of carbohydrate-binding residues and biophysical details, including structural information, providing valuable clues for the development and application of detection kits using ConA.

키워드

참고문헌

  1. Kim D, Lee HM, Oh KS, Ki AY, Protzman RA, Kim D, et al. 2017. Exploration of the metal coordination region of concanavalin A for its interaction with human norovirus. Biomaterials 128: 33-43. https://doi.org/10.1016/j.biomaterials.2017.03.006
  2. Balzarini J. 2007. Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy. Nat. Rev. Microbiol. 5: 583-597. https://doi.org/10.1038/nrmicro1707
  3. Bronzoni RV, Fatima M, Montassier S, Pereira GT, Gama NM, Sakai V, et al. 2005. Detection of infectious bronchitis virus and specific anti-viral antibodies using a concanavalin A-sandwich-ELISA. Viral Immunol. 18: 569-578. https://doi.org/10.1089/vim.2005.18.569
  4. Garrison AR, Giomarelli BG, Lear-Rooney CM, Saucedo CJ, Yellayi S, Krumpe LR, et al. 2014. The cyanobacterial lectin scytovirin displays potent in vitro and in vivo activity against Zaire Ebola virus. Antiviral Res. 112: 1-7. https://doi.org/10.1016/j.antiviral.2014.09.012
  5. O'Keefe BR, Giomarelli B, Barnard DL, Shenoy SR, Chan PK, McMahon JB, et al. 2010. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J. Virol. 84: 2511-2521. https://doi.org/10.1128/JVI.02322-09
  6. Okino CH, Alessi AC, Montassier Mde F, Rosa AJ, Wang X, Montassier HJ. 2013. Humoral and cell-mediated immune responses to different doses of attenuated vaccine against avian infectious bronchitis virus. Viral Immunol. 26: 259-267. https://doi.org/10.1089/vim.2013.0015
  7. Bouckaert J, Dewallef Y, Poortmans F, Wyns L, Loris R. 2000. The structural features of concanavalin A governing non-proline peptide isomerization. J. Biol. Chem. 275: 19778-19787. https://doi.org/10.1074/jbc.M001251200
  8. Doyle R, Keller K. 1984. Lectins in diagnostic microbiology. Eur. J. Clin. Microbiol. 3: 4-9. https://doi.org/10.1007/BF02032806
  9. Gerlits OO, Coates L, Woods RJ, Kovalevsky A. 2017. Mannobiose binding induces changes in hydrogen bonding and protonation states of acidic residues in concanavalin A as revealed by neutron crystallography. Biochemistry 56: 4747-4750. https://doi.org/10.1021/acs.biochem.7b00654
  10. Kadirvelraj R, Foley BL, Dyekjaer JD, Woods RJ. 2008. Involvement of water in carbohydrate-protein binding: concanavalin A revisited. J. Am. Chem. Soc. 130: 16933-16942. https://doi.org/10.1021/ja8039663
  11. Bouckaert J, Loris R, Wyns L. 2000. Zinc/calcium- and cadmium/cadmium-substituted concanavalin A: interplay of metal binding, pH and molecular packing. Acta Crystallogr. D Biol. Crystallogr. 56: 1569-1576. https://doi.org/10.1107/S0907444900013342
  12. Kantardjieff KA, Hochtl P, Segelke BW, Tao FM, Rupp B. 2002. Concanavalin A in a dimeric crystal form: revisiting structural accuracy and molecular flexibility. Acta Crystallogr. D Biol. Crystallogr. 58: 735-743. https://doi.org/10.1107/S0907444901019588
  13. Cao S, Lou Z, Tan M, Chen Y, Liu Y, Zhang Z, et al. 2007. Structural basis for the recognition of blood group trisaccharides by norovirus. J. Virol. 81: 5949-5957. https://doi.org/10.1128/JVI.00219-07
  14. Auer HE, Schilz T. 1984. pH-dependent changes in properties of concanavalin A in the acid pH range. Int. J. Pept. Protein Res. 24: 462-471.
  15. Moothoo DN, Naismith JH. 1998. Concanavalin A distorts the beta-GlcNAc-(1-->2)-Man linkage of ${\beta}-GlcNAc-(1-->2)-{\alpha}-Man-(1-->3)-[{\beta}-GlcNAc-(1-->2)-{\alpha}-Man-(1-->6)]$-Man upon binding. Glycobiology 8: 173-181. https://doi.org/10.1093/glycob/8.2.173
  16. Sinha S, Mitra N, Kumar G, Bajaj K, Surolia A. 2005. Unfolding studies on soybean agglutinin and concanavalin A tetramers: a comparative account. Biophys. J. 88: 1300-1310. https://doi.org/10.1529/biophysj.104.051052
  17. Kaushik S, Mohanty D, Surolia A. 2009. The role of metal ions in substrate recognition and stability of concanavalin A: a molecular dynamics study. Biophys. J. 96: 21-34. https://doi.org/10.1529/biophysj.108.134601
  18. Christie DJ, Munske GR, Appel DM, Magnuson JA. 1980. Conformational changes following Mn(II) binding to demetalized concanavalin A1. Biochem. Biophys. Res. Commun. 95: 1043-1048. https://doi.org/10.1016/0006-291X(80)91578-8
  19. Pandolfino ER, Appel DM, Christie DJ, Magnuson JA. 1980. Location of $Mn^{2+}$ in concanavalin A containing only a $Mn^{2+}$ ion. Biochem. Biophys. Res. Commun. 96: 1248-1252. https://doi.org/10.1016/0006-291X(80)90085-6
  20. Magnuson JA, Alter GM, Appel DM, Christie DJ, Munske GR, Pandolfino ER. 1983. Metal ion binding to concanavalin A. J. Biosci. 5: 9-17. https://doi.org/10.1007/BF02702969
  21. Bezerra GA, Oliveira TM, Moreno FB, de Souza EP, da Rocha BA, Benevides RG, et al. 2007. Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: new insights into the understanding of the structure-biological activity relationship in legume lectins. J. Struct. Biol. 160: 168-176. https://doi.org/10.1016/j.jsb.2007.07.012