DOI QR코드

DOI QR Code

Optimization of Laccase Production from Bacillus sp. PK4 through Statistical Design of Experiments

  • Rajeswari, Murugesan (Department of Biochemistry, Biotechnology, and Bioinformatics Avinashilingam Institute for Home Science and Higher Education for Women) ;
  • Bhuvaneswari, Vembu (Department of Biochemistry, Biotechnology, and Bioinformatics Avinashilingam Institute for Home Science and Higher Education for Women)
  • Received : 2017.10.20
  • Accepted : 2017.11.27
  • Published : 2017.12.28

Abstract

Statistical design of experiments was employed to optimize the media composition for the production of laccase from Bacillus sp. PK4. In order to find the key ingredients for the best yield of enzyme production from the selected eleven variables viz yeast extract, glucose, zinc sulphate, copper sulphate, potassium chloride, magnesium sulphate, calcium chloride, ferrous sulphate, sodium chloride, potassium dihydrogen phosphate ($KH_2PO_4$) and dipotassium hydrogen phosphate ($K_2HPO_4$), Plackett-Burman design was applied. The $MgSO_4$, $FeSO_4$, and $CuSO_4$ showed positive estimate, and their concentration optimized further. The steepest ascent method and Box-Behnken method revealed that 1.5 mM $MgSO_4$, 0.33 g/l $FeSO_4$ and 1.41 mM $CuSO_4$ were optimal for the laccase production by Bacillus sp. PK4. This optimization strategy leads to enhancement of laccase production from 2.13 U/ml to 40.79 U/ml. Agro-wastes residues replace the carbon source glucose in the optimized media namely sugarcane bagasse, wheat bran, rice husk, and groundnut shell, among these groundnut shells (117 U/ml) was found to enhance the laccase production significantly. The laccase produced by Bacillus sp. PK4 was found to have the potential to degrade persistent organic pollutant benzo[a]pyrene.

Keywords

References

  1. Ihssen J, Reiss R, Luchsinger R, Meyer LT, Richter M. 2015. Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Scientific Reports, 5: 10465. https://doi.org/10.1038/srep10465
  2. Jeon JR, Chang YS. 2013. Laccase-mediated oxidation of small organics: bifunctional roles for versatile application. Trends Biotechnol. 31: 335-341. https://doi.org/10.1016/j.tibtech.2013.04.002
  3. Mot AC, Silaghi-Dumitrescu R. 2012. Laccases: Complex architectures for one-electron oxidations. Biochem. 77: 1395-1407.
  4. Quaratino D, Ciaffi M, Federici E, D'Annibale A. 2008. Response surface methodology study of laccase production in Panus tigrinus liquid cultures. Biochem. Eng. J. 39: 236-246. https://doi.org/10.1016/j.bej.2007.09.007
  5. Shi X, Liu Q, Ma J, Liao H, Xiong X, Zheng K, et al. 2015. An acidstable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities. Biotechnol. Lett. 37: 2279-2288. https://doi.org/10.1007/s10529-015-1914-1
  6. Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R. 1993. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of Azospirllium lipoferum. FEMS Microbiol. Lett. 18: 205-210.
  7. Enguita FJ, Martins LO, Henriques AO, Carrondo MA. 2003. Crystal structure of bacterial endospore coat component: a laccase with enhanced thermostability properties. J. Biol. Chem. 278: 19416- 19425. https://doi.org/10.1074/jbc.M301251200
  8. Rajeswari M, Bhuvaneswari V. 2016. Production of extracellular laccase from the newly isolated Bacillus sp. PK4. Afri. J. Biotechnol. 15: 1813-1826.
  9. Slomczynsky D, Nakas JP, Tanenbaum SW. 1995. Purification and characterization of laccase from Botrytis cinerea. Appl. Environ. Microbiol. 61: 907-912.
  10. Montgomeryd DC, Runger GC. 2002 Applied Statistics and Probability for Engineers. third ed. John Wiley and Sons, New York, 200-250.
  11. R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  12. Fox J. 2011. Rcmdr: RCommander. Version 1.7-2
  13. Fu JF, Zhao YQ, Wu QL. 2007. Optimising photoelectrocatalytic oxidation of fulvic acid using response surface methodology. J. Hazard. Mater. 144: 499-505. https://doi.org/10.1016/j.jhazmat.2006.10.071
  14. Gonzalez JC, Medina SC, Rodrigue A, Osma JF, Almeciga-Diaz CJ, Sanchez OF. 2013. Production of Trametes pubescens laccase under submerged and semi solid culture condition on agro industrial wastes. PLoS One 8: e73721. https://doi.org/10.1371/journal.pone.0073721
  15. Simonen M, Palva I. 1993. Protein secretion in Bacillus species. Microbiological Reviews 57: 109-137.
  16. Salihu A, Alam MZ, Abdul-Karim MI, Salleh HM. 2011. Optimization of lipase production by Candida cylindracea in palm oil mill effluent based medium using statistical experimental design. J. Mol. Catal B: Enzym. 69: 66-73. https://doi.org/10.1016/j.molcatb.2010.12.012
  17. Gainfreda L, Xu F, Bollag JM. 1999. Laccases: a useful group of oxidoreductive enzymes. Biorem. J. 3: 11-26.
  18. Eggert C, Temp U, Eriksson KL. 1996. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterisation of the laccase. Appl. Environ. Microbiol. 62: 1151- 1158.
  19. Pointing SB, Jones EBG, Vrijmoed LLP. 2000. Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 92: 139-144. https://doi.org/10.2307/3761458
  20. Cavallazzi JRR, Kasuya CM, Soares MA. 2005. Screening of inducers for laccase production by Lentinula edodes in liquid medium. Braz. J. Microbiol. 36: 383-387.
  21. Piscitelli A, Giardina P, Lettera V, Pezzella C, Sannia G, Faraco V. 2011. Induction and transcriptional regulation of laccases in fungi. Curr Genom. 12: 104-112. https://doi.org/10.2174/138920211795564331
  22. Sondhi S, Sharma P, George N, Chauhan PS, Puri N, Gupta N. 2014. An extracellular thermo-alkai-stable laccase from Bacillus tequilensis SN4, with a potential to biobleach softwood pulp. 3 Biotech. 5: 175-185.
  23. Santo M, Weitsman R, Sivan A. 2013. The role of the copper-binding enzyme-laccase - in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int. Biodeter. Biodegr. 84: 204-210. https://doi.org/10.1016/j.ibiod.2012.03.001
  24. Arockiasamy S, Krishnan IPG, Anandakrishnan N, Seenivasan S, Sambath A, Venkatasubramani JP. 2008. Enhanced production of laccase from Coriolus versicolor NCIM 966 by nutrient optimization using response surface methodology. Appl. Biochem. Biotechnol. 151: 371-379. https://doi.org/10.1007/s12010-008-8205-4
  25. doValle JS, Vandenberghe LPS, Santana TT, Linde GA, Colauto NB, Soccol CR. 2014. Optimization of Agaricus blazei laccase production by submerged cultivation with sugarcane molasses. Afr. J. Microbiol. Res. 8: 939-946. https://doi.org/10.5897/AJMR2013.6508
  26. Fonsesca MI, Shimizu E, Zapata PD, Villalba LL. 2010. Copper inducing effect on laccase production of white rot fungi native form Misiones (Argentina). Enzyme Mirob. Tech. 46: 534-539. https://doi.org/10.1016/j.enzmictec.2009.12.017
  27. Niladevi KN, Sukumaran RK, Jacob N, Anisha GS, Prema P. 2009. Optimization of laccase production from a novel strain Streptomyces psammoticus using response surface methodology. Microbiol. Res. 164: 105-113. https://doi.org/10.1016/j.micres.2006.10.006
  28. Raju GU, Kumarappu S, Gaitonde VN. 2012. Mechanical and physical characterization of agricultural waste reinforced polymer composites. J. Mater. Environ. Sci. 3: 907-916.
  29. Ang TN, Yoon LW, Lee KM, Ngoh GC, Chua ASM, Lee MG. 2011. Efficiency of ionic liquids in the dissolution of rice husk. BioResources 6: 4790-4800.
  30. Brijwani K, Oberoi HS, Vadlani PV. 2010. Production of cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem. 45: 120-128. https://doi.org/10.1016/j.procbio.2009.08.015
  31. Farajzadeh MA, Monji AB. 2004. Adsorption characteristics of wheat bran towards heavy metal cations. Sep. Sci. Technol. 38: 197-207.
  32. Liu C, Ngo HH, Guo W, Tung KL. 2012. Optimal conditions for preparation of banana peels, sugarcane bagasse and watermelon rind in removing copper from water. Bioresource Technol. 119: 349-354. https://doi.org/10.1016/j.biortech.2012.06.004
  33. Kumari AR, Babu PJ, Rao CK, Rao GJN, Swathi P, Sailokesh R. 2014. Comparative study on kinetics, equilibrium and thermodynamics of the adsorption of copper (II) by plant biopolymers. Afr. J. Adv. Biotechnol. 2: 13-32.
  34. Li Q, Zhai J, Zhang W, Wang M, Zhou J. 2006. Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk. J. Hazard Mater. B. 141: 163-167.
  35. Irshad M, Bahadur BA, Anwar Z, Yaqoob M, Ijaz A, Iqbal, HMN. 2012. Decolorization applicability of sol-gel matrix-immobilzed laccase production from Ganoderma leucidum using agro-industrial waste. BioResources 7: 4249-4261.
  36. Mishra A, Kumar S, Kumar S. 2008. Application of Box-Behnken experimental desingn for optimization of laccase production by Coriolus versicolor MTCC138 in solid-state fermentation. J. Sci. Ind. Res. 67: 1098-1107.
  37. Singh G, Ahuja N, Sharma P, Capalash N. 2009. Response surface method'ology for the optimized production of an alkalophilic laccase from ${\gamma}$-proteobacterium JB. BioResources. 4: 544-553.
  38. Kuddus M, Joseph B, Ramteke PW. 2013. Production of laccase from newly isolated Pseudomonas putida and its application in bioremediation of synthetic dyes and industrial effluents. Biocatal Agric. Biotechnol. 2: 333-338.
  39. Kaushik G, Thakur IS. 2014. Production of laccase and optimization of its production by Bacillus sp. using distillery spent wash as inducer. Bioremediat. J. 18: 28-37. https://doi.org/10.1080/10889868.2013.834869