DOI QR코드

DOI QR Code

A Dynamic Orchestration Framework for Supporting Sustainable Services in IT Ecosystem

IT 생태계의 지속적인 운영을 위한 동적 오케스트레이션 프레임워크

  • 박수진 (서강대학교 기술경영전문대학원)
  • Received : 2017.09.08
  • Accepted : 2017.09.14
  • Published : 2017.12.31

Abstract

Not only services that are provided by a single system have been various with the development of the Internet of Things and autonomous software but also new services that are not possible before are provided through collaboration between systems. The collaboration between autonomous systems is similar to the ecosystem configuration in terms of biological viewpoints. Thus, it is called the IT Ecosystem, and this concept has arisen newly in recent years. The IT Ecosystem refers to a concept that achieves a mission of each of a number of heterogeneous systems rather than a single system utilizing their own autonomy as well as achieving the objectives of the overall system simultaneously in order to meet a single common goal. In our previous study, we proposed architecture of elementary level and as well as basic several meta-models to implement the IT Ecosystem. This paper proposes comprehensive reference architecture framework to implement the IT Ecosystem by cleansing the previous study. Among them, a utility function based on cost-benefit model is proposed to solve the dynamic re-configuration problem of system components. Furthermore, a measure of using genetic algorithm is proposed as a solution to reduce the dynamic re-configuration overhead that is increased exponentially according to the expansion of the number of entities of components in the IT Ecosystem. Finally, the utilization of the proposed orchestration framework is verified quantitatively through probable case studies on IT Ecosystem for unmanned forestry management.

자율성을 가지는 소프트웨어와 사물 인터넷 기술 등의 발달로 단일 시스템이 제공하는 서비스들이 다양해짐은 물론, 기존에는 상상하지 못했던 새로운 서비스들이 시스템간의 협업을 통해 제공되고 있다. 자율성을 가지는 시스템 간의 협업은 마치 생물학적 관점에서의 생태계 구성과 닮아 있다는 점에서 IT 생태계의 개념이 근래 들어 새롭게 대두되었다. IT 생태계란 단일 시스템이 아닌 다수개의 이기종 시스템들이 하나의 공통된 목적을 달성하기 위해 각자의 자율성을 활용하여 자신의 미션을 달성하는 동시에 전체 시스템 그룹의 목적을 이뤄나가는 개념이다. 우리는 앞선 연구에서 IT생태계 구현을 위한 기본적인 몇 가지 메타모델과 초보적인 수준의 아키텍처를 제안한 바 있다. 본 논문은 이러한 선행연구를 정제하여 IT생태계 시스템 구현을 위한 참조 아키텍처 프레임워크를 제안하고 있다. 제안된 프레임워크는 시스템 구성원의 동적 재구성 문제에 비용-혜택 모델을 기반으로 하는 유틸리티 함수와 IT생태계 구성원의 개체 숫자 확장에 따라 기하급수적으로 증가하는 동적 재구성 오버헤드를 감소시킬 수 있는 해결책으로서의 유전자 알고리즘 활용 방안을 포함하고 있다. 무인삼림관리를 위한 IT 생태계 시스템이라는 개연성 있는 사례 연구를 통해 제안된 프레임워크의 효용성을 정량적으로 검증하고 있다.

Keywords

References

  1. A. Rausch, J. Muller, D. Niebuhr, S. Herold, and U. Goltz, "IT Ecosystems: A new paradigm for engineering complex adaptive software systems," in Proceedings of the 2012 6th IEEE International Conference on Digital Ecosystems and Technologies, Campione d'Italia , 2012, pp.1-6.
  2. P. Vromant, D. Weyns, S. Malek, and J. Andersson, "On interacting control loops in self-adaptive systems," in Proceedings of the International symposium on Software engineering for adaptive and self-managing systems (SEAMS '11), New York, 2011, pp. 202-207.
  3. V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos, "Awareness requirements for adaptive systems," in Proceedings of the 6th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS '11), New York, 2011, pp 60-69.
  4. L. Sabatucci and M. Cossentino, "From Means-End Analysis to Proactive Means-End Reasoning," in Proceedings of the 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS '15), Florence, 2015, pp.2-12.
  5. J. O. Kephart and D. M. Chess, "The vision of autonomic computing," IEEE Computer, Vol.36, No.1, pp.41-50, 2003. https://doi.org/10.1109/MC.2003.1160055
  6. K. Schneider, S. Meyer, M. Peters, F. Schliephacke, and J. A. L. Morschbach, "Feedback in context: Supporting the evolution of IT-ecosystems," Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol.6156, pp.191-205, 2010.
  7. S. Herold, H. Klus, D. Niebuhr, and A. Rausch, "Engineering of IT Ecosystems: Design of ultra-large-scale softwareintensive systems," in Proceedings of the 2nd International Workshop on Ultra-large-scale Software-intensive Systems (ULSSIS '08), New York, 2008, pp.49-52.
  8. D. Ko and S. Park, "A Dynamic Framework for IT Ecosystem," in Proceedings of the Korea Conference on Software Engineering, PyeongChang, 2014, pp.150-153.
  9. D. Ko and S. Park, "Android Platform Based Self-Adaptive Framework for IT Ecosystem: Unmanned Forest Management System," in Proceedings of the Korea Conference on Software Engineering, PyeongChang, 2015, pp.335-338.
  10. S. A. DeLoach and J. C. Garcia-Ojeda, "O-MaSE: a customisable approach to designing and building complex, adaptive multi-agent systems," International Journal of Agent-Oriented Software Engineering, Vol.4, No.3, pp. 244-280, 2010. https://doi.org/10.1504/IJAOSE.2010.036984
  11. D. Weyns, et al, "On Patterns for Decentralized Control in Self-Adaptive Systems," Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol.7475, pp.76-107, 2013.
  12. D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste, "Rainbow: architecture-based self-adaptation with reusable infrastructure," Computer, Vol .37, No.10, pp.46-54, 2004. https://doi.org/10.1109/MC.2004.175
  13. APACHE Felix, Welcome to Apache Felix [Internet] http://felix. apache.org.
  14. OSGi Alliance, Specification-OSGi [Internet], http://www.osgi.org/Specifications/HomePage.
  15. J. H. Holland, "Adaptation in Natural and Artificial Systems," MA: University of Michigan Press, 1992.
  16. C. Ferreira, "Gene Expression Programming: A New Adaptive Algorithm for Solving Problems," Complex Systems, Vol.139, No.2, pp.87-129, 2002.
  17. S. Hallsteinsen, K. Geihs, N. Paspallis, F. Eliassen, G. Horn, J. Lorenzo, A. Mamelli, and G. A. Papadopoulos, "A development framework and methodology for self-adapting applications in ubiquitous computing environments," Journal of Systems and Software, Vol. 85, No.12, pp.2840-2859, 2012. https://doi.org/10.1016/j.jss.2012.07.052
  18. M. Al-Zinati, F. Araujo, D. Kuiper, J. Valente, and R. Z. Wenkstern, "DIVAs 4.0: A Multi-Agent Based Simulation Framework," in Proceedings of the 2013 IEEE/ACM 17th International Symposium on Distributed Simulation and Real Time Applications, Delft, 2013, pp.105-114.