DOI QR코드

DOI QR Code

Development of Turmeric Extract Nanoemulsions and Their Incorporation into Canned Ham

  • Kim, Seung Wook (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University) ;
  • Garcia, Coralia V. (Department of Food Science and Technology, Keimyung University) ;
  • Lee, Bom Nae (Department of Food Science and Technology, Keimyung University) ;
  • Kwon, Ho Jeong (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University) ;
  • Kim, Jun Tae (Department of Food Science and Technology, Keimyung University)
  • Received : 2017.10.16
  • Accepted : 2017.11.22
  • Published : 2017.12.31

Abstract

In this study, a nanoemulsion formulation for encapsulating turmeric extract was developed and its physicochemical characteristics including particle diameter, zeta potential, polydispersity index, and stability were determined. The turmeric nanoemulsion (TE-NE) droplets exhibited small diameter (165 nm), low PDI (0.17), and high zeta potential (-31.80 mV), all desirable characteristics in nanoemulsions, as well as stability in a wide range of pH. The TE-NE was spray-dried as a means to allow its incorporation into food products and reduce potential transport and storage costs. The resulting powder exhibited a pale yellowish appearance and had a curcuminoids content of 0.39 mg/g. The spray-dried TE-NE powder was incorporated into minced pork to make canned ham, and the sensory characteristics of the ham were evaluated. As a result, the canned ham incorporating TE-NE powder received the same overall acceptability score as the control, and only exhibited slight yellowing. By contrast, ham incorporating turmeric extract exhibited substantial yellowing, and its appearance was considered less acceptable by the panelists. Therefore, the TE-NE formulation could be incorporated into canned ham and other meat products without substantially affecting their sensory qualities.

Keywords

References

  1. Aditya, N. P., Aditya, S., Yang, H., Kim, H. W., Park, S. O., and Ko, S. (2015) Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chem. 173, 7-13. https://doi.org/10.1016/j.foodchem.2014.09.131
  2. Adjonu, R., Doran, G., Torley, P., and Agboola, S. (2014) Whey protein peptides as components of nanoemulsions: A review of emulsifying and biological functionalities. J. Food Eng. 122, 15-27. https://doi.org/10.1016/j.jfoodeng.2013.08.034
  3. Ahmed, K., Li, Y., McClements, D. J., and Xiao, H. (2012) Nanoemulsion-and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chem. 132, 799-807. https://doi.org/10.1016/j.foodchem.2011.11.039
  4. Ahn, M. Y., Hwang, J. S., Lee, S. B., Ham, S. A., Hur, J., Kim, J. T., and Seo, H. G. (2017) Curcumin longa extract-loaded nanoemulsion improves the survival of endotoxemic mice by inhibiting nitric oxide-dependent HMGB1 release. Peer J. 5, e3808. https://doi.org/10.7717/peerj.3808
  5. Anand, P., Thomas, S. G., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Sung, B., Tharakan, S. T., Misra, K., Priyadarsini, I. K., Rajasekharan, K. N., and Aggarwal, B. B. (2008) Biological activities of curcumin and its analogues (congeners) made by man and Mother Nature. Biochem.Pharmacol. 76, 1590-1611. https://doi.org/10.1016/j.bcp.2008.08.008
  6. Araujo, C. and Leon, L. (2001) Biological activities of Curcuma longa L. Mem. Inst. Oswaldo Cruz 96, 723-728. https://doi.org/10.1590/S0074-02762001000500026
  7. Chempakam, B. and Parthasarathy, V. A. (2008) Turmeric. In: Chemistry of Spices. Parthasarathy, V. A., Chempakam, B. and Zachariah, T. J. (eds.). Oxford University Press, NY, pp. 97-117.
  8. Choi, K.-O., Aditya, N. P., and Ko, S. (2014) Effect of aqueous pH and electrolyte concentration on structure, stability and flow behavior of non-ionic surfactant based solid lipid nano-particles. Food Chem. 147, 239-244. https://doi.org/10.1016/j.foodchem.2013.09.095
  9. Ensign, L. M., Cone, R., and Hanes, J. (2012) Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64, 557-570. https://doi.org/10.1016/j.addr.2011.12.009
  10. Eskandani, M., Hamishehkar, H., and Ezzati Nazhad Dolatabadi, J. (2013) Cyto/genotoxicity study of polyoxyethylene (20) sorbitan monolaurate (Tween 20). DNA Cell Biol. 32, 498-503. https://doi.org/10.1089/dna.2013.2059
  11. Hu, Q., Gerhard, H., Upadhyaya, I., Venkitanarayanan, K., and Luo, Y. (2016) Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies. Int. J. Biol. Macromol. 87, 130-140. https://doi.org/10.1016/j.ijbiomac.2016.02.051
  12. Jafari, S. M., Assadpoor, E., Bhandari, B., and He, Y. (2008) Nano-particle encapsulation of fish oil by spray drying. Food Res. Int. 41, 172-183. https://doi.org/10.1016/j.foodres.2007.11.002
  13. Jeong, H.-J., Lee, Y.-K., Ganesan, P., Kwak, H.-S., and Chang, Y. H. (2017) Physicochemical, microbial, and sensory properties of queso blanco cheese supplemented with powdered microcapsules of tomato extracts. Korean J. Food Sci. An. 37, 342-350. https://doi.org/10.5851/kosfa.2017.37.3.342
  14. Lee, S. J., Choi, S. J., Li, Y., Decker, E. A., and McClements, D. J. (2011) Protein-stabilized nanoemulsions and emulsions: comparison of physicochemical stability, lipid oxidation, and lipase digestibility. J. Agric. Food Chem. 59, 415-427. https://doi.org/10.1021/jf103511v
  15. Li, X., Qi, J., Xie, Y., Zhang, X., Hu, S., Xu, Y., Lu, Y., and Wu, W. (2013) Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: Preparation, characterization, and hypoglycemic effect in rats. Int. J. Nanomed. 8, 23-32.
  16. Livney, Y. D. (2010) Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15, 73-83. https://doi.org/10.1016/j.cocis.2009.11.002
  17. Lopez-Huertas, E. (2010) Health effects of oleic acid and longchain omega-3 fatty acids (EPA and DHA) enriched milks. Areview of intervention studies. Pharmacol. Res. 61, 200-207. https://doi.org/10.1016/j.phrs.2009.10.007
  18. Mayer, S., Weiss, J., and McClements, D. J. (2013) Vitamin Eenrichednanoemulsions formed by emulsion phase inversion:Factors influencing droplet size and stability. J. Colloid Interface Sci. 402, 122-130. https://doi.org/10.1016/j.jcis.2013.04.016
  19. McClements, D. J. (2013) Edible lipid nanoparticles: Digestion,absorption, and potential toxicity. Prog. Lipid Res. 52, 409-423. https://doi.org/10.1016/j.plipres.2013.04.008
  20. Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F.,and Walters, M. A. (2017) The essential medicinal chemistryof curcumin. J. Med. Chem. 60, 1620-1637. https://doi.org/10.1021/acs.jmedchem.6b00975
  21. Ozturk, B., Argin, S., Ozilgen, M., and McClements, D. J. (2014)Formation and stabilization of nanoemulsion-based vitaminE delivery systems using natural surfactants: Quillaja saponinand lecithin. J. Food Eng. 142, 57-63. https://doi.org/10.1016/j.jfoodeng.2014.06.015
  22. Ozturk, B., Argin, S., Ozilgen, M., and McClements, D. J. (2015a)Formation and stabilization of nanoemulsion-based vitaminE delivery systems using natural biopolymers: Whey proteinisolate and gum arabic. Food Chem. 188, 256-263. https://doi.org/10.1016/j.foodchem.2015.05.005
  23. Ozturk, B., Argin, S., Ozilgen, M., and McClements, D. J. (2015b)Nanoemulsion delivery systems for oil-soluble vitamins: Influenceof carrier oil type on lipid digestion and vitamin D3 bioaccessibility.Food Chem. 187, 499-506. https://doi.org/10.1016/j.foodchem.2015.04.065
  24. Park, S. J., Garcia, C. V., Shin, G. H., and Kim, J. T. (2017) Developmentof nanostructured lipid carriers for the encapsulationand controlled release of vitamin D3. Food Chem. 225,213-219. https://doi.org/10.1016/j.foodchem.2017.01.015
  25. Rackova, L., Kostalova, D., Bezakova, L., Fialova, S., Bauerova,K., Toth, J., Stefek, M., Vanko, M., Holkova, I., and Oblozinsky,M. (2009) Comparative study of two natural antioxidants,curcumin and Curcuma longa extract. J. Food Nutr. Res. 48,148-152
  26. Rezaee, M., Basri, M., Raja Abdul Rahman, R. N. Z., Salleh, A.B., Chaibakhsh, N., and Fard Masoumi, H. R. (2014) A multivariatemodeling for analysis of factors controlling the particlesize and viscosity in palm kernel oil esters-based nanoemulsions.Ind. Crop. Prod. 52, 506-511. https://doi.org/10.1016/j.indcrop.2013.10.046
  27. Shin, G. H., Chung, S. K., Kim, J. T., Joung, H. J., and Park, H. J.(2013) Preparation of chitosan-coated nanoliposomes for improvingthe mucoadhesive property of curcumin using theethanol injection method. J. Agric. Food Chem. 61, 11119-11126. https://doi.org/10.1021/jf4035404
  28. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., and Garcia-Celma,M. J. (2005) Nano-emulsions. Curr. Opin. Colloid InterfaceSci. 10, 102-110. https://doi.org/10.1016/j.cocis.2005.06.004
  29. Teo, A., Goh, K. K. T., Wen, J., Oey, I., Ko, S., Kwak, H.-S., andLee, S. J. (2016) Physicochemical properties of whey protein,lactoferrin and Tween 20 stabilised nanoemulsions: Effect oftemperature, pH and salt. Food Chem. 197, 297-306. https://doi.org/10.1016/j.foodchem.2015.10.086
  30. Teres, S., Barcelo-Coblijn, G., Benet, M., Alvarez, R., Bressani,R., Halver, J. E., and Escriba, P. V. (2008) Oleic acid contentis responsible for the reduction in blood pressure induced byolive oil. PNAS 105, 13811-13816. https://doi.org/10.1073/pnas.0807500105
  31. Wang, X., Jiang, Y., Wang, Y.-W., Huang, M.-T., Ho, C.-T., andHuang, Q. (2008) Enhancing anti-inflammation activity ofcurcumin through O/W nanoemulsions. Food Chem. 108, 419-424. https://doi.org/10.1016/j.foodchem.2007.10.086

Cited by

  1. Improving functionality, bioavailability, nutraceutical and sensory attributes of fortified foods using phenolics-loaded nanocarriers as natural ingredients vol.137, pp.None, 2020, https://doi.org/10.1016/j.foodres.2020.109555