DOI QR코드

DOI QR Code

Calibration of δ13C values of CO2 gas with different concentrations in the analysis with Laser Absorption Spectrometry

레이저흡광분석기(Laser Absorption Spectrometry)를 이용한 CO2가스의 탄소안정동위원소비 보정식 산출

  • 정태양 (연세대학교 자연과학연구원) ;
  • 우남칠 (연세대학교 지구시스템과학과) ;
  • 신우진 (한국기초과학지원연구원) ;
  • 봉연식 (한국기초과학지원연구원) ;
  • 최승현 (한국기초과학지원연구원) ;
  • 김연태 (연세대학교 자연과학연구원)
  • Received : 2017.11.01
  • Accepted : 2017.12.04
  • Published : 2017.12.28

Abstract

Stable carbon isotope ratio of carbon dioxide (${\delta}^{13}C_{CO2}$) is used as an important indicator in the researches for global climate change and carbon capture and sequestration technology. The ${\delta}^{13}C$ value has been usually analyzed with Isotope Ratio Mass Spectrometer (IRMS). Recently, the use of Laser Absorption Spectrometry (LAS) is increasing because of the cost efficiency and field applicability. The purpose of this study was to suggest practical procedures to prepare laboratory reference gases for ${\delta}^{13}C_{CO2}$ analysis using LAS. $CO_2$ gas was adjusted to have the concentrations within the analytical range. Then, the concentration of $CO_2$ was assessed in a lab approved by the Korea Laboratory Accreditation Scheme and the ${\delta}^{13}C_{CO2}$ value was measured by IRMS. When the instrument ran over 12 hours, the ${\delta}^{13}C$ values were drifted up to ${\pm}10$‰ if the concentration of $CO_2$ was shifted up to 1.0% of relative standard deviation. Therefore, periodical investigation of analytical suitability and correction should be conducted. Because ${\delta}^{13}C_{CO2}$ showed the dependency on $CO_2$ concentration, we suggested the equation for calibrating the concentration effect. After calibration, ${\delta}^{13}C_{CO2}$ was well matched with the result of IRMS within ${\pm}0.52$‰.

기후변화 연구 및 이산화탄소($CO_2$) 지중저장 분야 등에서 $CO_2$ 가스의 탄소안정동위원소비(${\delta}^{13}C_{CO2}$)는 주요한 인자로서 인식되고 있다. ${\delta}^{13}C$는 주로 안정동위원소질량분석기(Isotope Ratio Mass Spectrometry: IRMS)로 분석하지만, 최근 분석비용 및 현장적용성의 문제로 레이저흡광분석기(Laser Absorption Spectrometry: LAS)의 사용이 확대되고 있다. 본 연구는 LAS를 이용한 ${\delta}^{13}C_{CO2}$ 분석 시 분석적합성을 판단하는데 필요한 표준가스의 실질적 확보 방안과 주의사항을 제시하는 것을 목표로 하였다. 실험실 표준가스는 분석할 농도범위로 $CO_2$ 가스를 조제한 후, 한국인정기구 인증시험기관에서 $CO_2$ 농도를 측정한 후에 IRMS로 ${\delta}^{13}C_{CO2}$를 측정하여 사용하였다. 장시간 측정 시, 농도가 상대표준편차 1.0% 이하로 변이하면 ${\delta}^{13}C$는 최대 ${\pm}10$‰까지 변동할 수 있으므로, 표준가스를 주기적으로 측정하여 분석 적합성을 판단하고 필요 시 보정을 하여야 한다. ${\delta}^{13}C_{CO2}$$CO_2$ 농도에 의존성을 나타내므로, 분석하고자 하는 영역의 최소 및 최대 농도를 갖는 표준가스의 혼합실험을 통해 보정식을 산출하였으며, 보정 후 ${\delta}^{13}C_{CO2}$는 IRMS 측정값에서 ${\pm}0.52$‰ 이내의 편차를 나타내었다.

Keywords

References

  1. An, J., Lee, M. and Wang, S. (2017) Evaluation of the Sealing Capacity of the Supercritical $CO_2$ by the Measurement of Its Injection Pressure into the Tuff and the Mudstone in the Janggi Basin. Econ. Environ. Geol. v.50, p.303-311.
  2. Assayag, N., Rive, K., Ader, M., Jezequel, D. and Agrinier, P. (2006) Improved method for isotopic and quantitative analysis of dissolved inorganic carbon in natural water samples. Rapid Commun. Mass Spectrom. V.20, p.2243-2251. https://doi.org/10.1002/rcm.2585
  3. Bong, Y.-S. and Lee, K.-S. (2007) A fast, simple calibration method for organic carbon isotope analysis using continuous-flow elemental analyzer interfaced with an isotope ratio mass spectrometer. Anal. Sci. v.23, p.1447-1449. https://doi.org/10.2116/analsci.23.1447
  4. Brown, K., Whittaker, S., Wilson, M., Srisang, W., Smithson, H. and Tontiwachwuthikul, P. (2017) The history and development of the IEA GHG Weyburn- Midale $CO_2$ Monitoring and Storage Project in Saskatchewan, Canada (the world largest $CO_2$ for EOR and CCS program). Petroleum v.3, p.3-9. https://doi.org/10.1016/j.petlm.2016.12.002
  5. Global CCS Institute (2014) What Happens When $CO_2$ is Stored Underground? Q&A from the IEAGHG Weyburn-Midale $CO_2$ Monitoring and Storage Project. Global CCS Institute, Melbourne, ISBN Number 978-0-9871873-3-1
  6. Griffis, T.J. (2013) Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: A review of optical isotope techniques and their application. Agric. For. Meteorol. v.174-175, p.85-109. https://doi.org/10.1016/j.agrformet.2013.02.009
  7. Guillon, S., Pili, E. and Agrinier, P. (2012) Using a laserbased $CO_2$ carbon isotope analyser to investigate gas transfer in geological media. Appl. Phys. B v.107, p.449-457. https://doi.org/10.1007/s00340-012-4942-8
  8. Humez, P., Lions, J., Négrel, P. and Lagneau, V. (2014) $CO_2$ intrusion in freshwater aquifers: Review of geochemical tracers and monitoring tools, classical uses and innovative approaches. Appl. Geochem. V.46, p.95-108. https://doi.org/10.1016/j.apgeochem.2014.02.008
  9. International Atomic Energy Agency (accessed in Oct. 2017) (https://nucleus.iaea.org/)
  10. ISO (2015) ISO 6142-1: 2015 Gas analysis - Preparation of calibration gas mixtures -- Part 1: Gravimetric method for Class I mixtures.
  11. ISO (2001) ISO 6143:2001 Gas analysis - Comparison methods for determining and checking the composition of calibration gas mixtures.
  12. Jost, H.-J., Castrillo, A. and Wilson, H.W. (2006) Simultaneous $^{13}C$/$^{12}C$ and $^{18}O$/$^{16}O$ isotope ratio measurements on $CO_2$ based on off-axis integrated cavity output spectroscopy. Isotopes Environ. Health Stud. v.42, p.37-45. https://doi.org/10.1080/10256010500503163
  13. Jun, S.-C., Cheon, J.-Y., Yi, J.-H. and Yun, S.-T. (2017) Controlled release test facility to develop environmental monitoring techniques for geologically stored $CO_2$ in Korea. Energy Procedia v.114, p.3040-3051. https://doi.org/10.1016/j.egypro.2017.03.1432
  14. Korea Laboratory Accreditation Scheme (accessed in Oct. 2017) (https://www.kolas.go.kr/)
  15. Lee, K.-K., Lee, S.H., Yun, S.-T. and Jeen, S.-W. (2016) Shallow groundwater system monitoring on controlled $CO_2$ release sites: a review on field experimental methods and efforts for $CO_2$ leakage detection. Geosci. J. v.20, p.569-583. https://doi.org/10.1007/s12303-015-0060-z
  16. Lee, S.-Y., Lee, J.-U., Lee, I.-B. and Han, J. (2017) Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk. Appl. Energy v.189, p.725-738. https://doi.org/10.1016/j.apenergy.2016.12.066
  17. Los Gatos Research, Inc. (2013) Carbon Dioxide Carbon Isotope Analyzer User Manual. Document No. 912- U021 Version 1.A p.34.
  18. Mayer, B., Humex, P., Becker, V., Dalkhaa, C.k Rock, L., Myrttinen, A. and Barth, J.A.C. (2015) Assessing the usefulness of the isotopic composition of $CO_2$ for leakage monitoring at $CO_2$ storage sites: A review. Int. J. Greenh. Gas Con. v.37, p.46-60. https://doi.org/10.1016/j.ijggc.2015.02.021
  19. Myrttinen, A., Becker, V. and Barth, J.A.C. (2012) A review of methods used for equilibrium isotope fractionation investigations between dissolved inorganic carbon and $CO_2$. Earth-Sci. Rev. v.115, p.192-199. https://doi.org/10.1016/j.earscirev.2012.08.004
  20. National Institute of Standards and Technology, U.S. Department of Commerce (accessed in Oct. 2017) (https://www.nist.gov/)
  21. National Oceanic and Atmospheric Administration, U.S. Department of Commerce (accessed in Oct. 2017) (https://www.noaa.gov/)
  22. Picarro, Inc. (2017) Calibration Guide for Picarro Analyzers (Revision 1). p.18.
  23. RIGAS (2017) Certificate of reference material
  24. Sreekanth, K.J. (2016) Review on integrated strategies for energy policy planning and evaluation of GHG mitigation alternatives. Renew. Sust. Energ. Rev. v.64, p.837-850. https://doi.org/10.1016/j.rser.2016.06.086
  25. Tans, P.P., Crotwell, A.M. and Thoning, K.W. (2017) Aboundances of isotopologues and calibration of Cow greenhouse gas measurements. Atmos. Meas. Tech. v.10, p.2669-2685. https://doi.org/10.5194/amt-10-2669-2017
  26. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Garden, G.A.F., Diener, Al, Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G. and Strauss, H. (1999) $^{87}Sr$/$^{86}Sr$, ${\delta}^{13}C$ and ${\delta}^{18}O$ evolution of Phnerozoic seawater. Chem. Geol. v.161, p.59-88. https://doi.org/10.1016/S0009-2541(99)00081-9
  27. Vogel, J.C., Grootes, P.M. and Mook, W. (1970) Isotopic fractionation between gaseous and dissolved carbon dioxide. Z. Angew. Phys. V.230, p.225-238.
  28. Wahl, E.H., Fidric, B., Rella, C.W., Koulikov, S., Kharlamov, B., Tan, S., Kachanov, A.A., Richman, B.A., Crosson, E.R., Paldus, B.A., Kalaskar, S. and Bowling, D.R. (2006) Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of $^{13}C$/$^{12}C$ in carbon dioxide. Isotopes Environ. Health Stud. v.42, p.21-35. https://doi.org/10.1080/10256010500502934