DOI QR코드

DOI QR Code

A Preliminary Study on the Exhumation Mechanism of the Paleozoic Gwangcheon Gneiss in the Southwestern Margin of the Gyeonggi Massif

경기육괴 남서 연변부에 발달하는 고생대 광천편마암의 노출기작에 대한 예비 연구

  • Park, Seung-Ik (School of Earth System Science, Kyungpook National University)
  • 박승익 (경북대학교 자연과학대학 지구시스템과학부)
  • Received : 2017.11.22
  • Accepted : 2017.12.04
  • Published : 2017.12.28

Abstract

Exhumation mechanism of migmatite in orogenic belts provides insights into thermo-mechanical evolution of lithosphere in association with orogeny. This study deals with kinematics of structures in and around the Gwangcheon Gneiss, as a preliminary study on exhumation mechanism, which is a main constituent of a domal structure (viz., Oseosan Dome) in the Hongseong area, southwestern margin of the Gyeonggi massif. Geological structures in the Gwangcheon Gneiss, which mainly comprises southern and northwestern part of the Oseosan Dome, generally have kinematic component of top-outward shear. This feature is likely to represent diapiric dome-up movement. In addition, a high strain zone, by which the tectonic domain involving the Gwangcheon Gneiss is bounded on the west, show structural features with normal sense of shear component. Taking available (thermo)chronological data into account, it is interpreted that activation of the high strain zone and exhumation of the Gwangcheon Gneiss occurred during Late Triassic, when the Gyeonggi massif was widely affected by post-collisional processes. It means that the Gwangcheon Gneiss was diapirically moved up and exhumed in the footwall of extensional high strain zone in association with Triassic post-collisional processes.

조산대에 분포하는 혼성암의 노출기작은 조산운동과 관련된 암석권의 열-역학적 진화에 대한 정보를 제공한다. 본 연구는 경기육괴 남서 연변부 홍성지역에 발달하는 돔 구조(viz., 오서산 돔)의 주 구성요소인 고생대 광천편마암의 노출기작에 대한 예비 연구로서, 광천편마암의 내부 그리고 주변에서 획득한 지질구조 요소의 운동학적 특성을 다룬다. 오서산 돔의 남측과 북서측 날개부를 이루는 광천편마암의 내부 지질구조는 상부가 바깥 방향으로 내려가는 정 이동감각의 전단운동 요소를 가진다. 이는 광천편마암 및 이를 포함하는 오서산 돔이 다이아퍼 형태로 상승하였음을 지시할 수 있다. 또한 광천편마암이 속한 지구조영역을 서쪽으로 구획하는 고변형대에서 역시 상부가 아래로 내려가는 정 이동감각의 전단운동 요소가 뚜렷하게 인지된다. 기존에 보고된 (열)연대학적 자료를 고려하면 광천편마암을 포함하는 오서산 돔의 노출시기와 고변형대의 운동 시기는 경기육괴가 후 충돌 작용들에 의해 영향을 받았던 후기 트라이아스기로 해석된다. 이는 광천편마암이 트라이아스기의 후 충돌 과정으로서 확장성 요소를 가지는 고변형대의 하반에서 다이어퍼 형태로 상승 및 노출되었음을 의미한다.

Keywords

References

  1. Bonev, N., Burg, J.-P. and Ivanov, Z. (2006) Mesozoic- Tertiary structural evolution of an extensional gneiss dome-the Kesebir-Kardamos dome, eastern Rhodope (Bulgaria-Greece). International Journal of Earth Sciences, v.95, p.318-340. https://doi.org/10.1007/s00531-005-0025-y
  2. Carreras, J., Druguet, E. and Griera, A. (2005) Shear zone-related folds. Journal of Structural Geology, v.27, p.1229-1251. https://doi.org/10.1016/j.jsg.2004.08.004
  3. Charles, N., Faure, M. and Chen, Y. (2009) The Montagne Moire migmatitic dome emplcement (French Massif Central): new insights from petrofabric and AMS studies. Journal of Structural Geology, v.31, p.1423-1440. https://doi.org/10.1016/j.jsg.2009.08.007
  4. Cobbold, P.R. and Quinquis, H. (1980) Development of sheath folds in shear regimes. Journal of Structural Geology, v.2, p.119-126. https://doi.org/10.1016/0191-8141(80)90041-3
  5. Coney, P.J. and Harms, T.A. (1984) Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression. Geology, v.12, p.550-554. https://doi.org/10.1130/0091-7613(1984)12<550:CMCCCE>2.0.CO;2
  6. Crittenden, M.D., Coney, P.J. and Davis, G.H. (1980) Cordilleran Metamorphic Core Complexes. Geological Society of America Memoir, v.153, 490p.
  7. Cho, M., Cheong, W., Ernst, W.G., Yi, K. and Kim, J. (2013) SHRIMP U-Pb ages of detrital zircons in metasedimentary rocks of the cenral Ogcheon foldthrust belt, Korea: Evidence for tectonic assembly of Paleozoic sedimentary protoliths. Journal of Asian Earth Sciences, v.63, p.234-249. https://doi.org/10.1016/j.jseaes.2012.08.020
  8. Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K., (2000) Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth Science Review, v.52, p.175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  9. de Jong, K., Han, S. and Ruffet, G. (2015) Fast cooling following a Late Triassic metamorphic and magmatic pulse: implications for the tectonic evolution of the Korean collision belt. Tectonophysics, v.662, p.271-290. https://doi.org/10.1016/j.tecto.2015.06.016
  10. Ernst, W.G., Tsujimori, T., Zhang, R. and Liou, J.G. (2007) Permo-Triassic Collision, Subduction-Zone Metamorphism, and Tectoni Exhumation Along the East Asian Continental Margin. Annual Review of Earth Planetary Sciences, v.35, p.73-110. https://doi.org/10.1146/annurev.earth.35.031306.140146
  11. Fayon, A.K., Whitney, D.L. and Teyssier, C. (2004) Exhumation of orogenic crust: Diapiric ascent versus low-angle normal faulting. In: Whitney, D.L., Teyssier, C. and Siddoway, C.S. (ed.) Gneiss domes in orogeny. Geological Society of America Special Paper, v.380, p.129-139.
  12. Fowler, T.J. and Osman, A.F. (2001) Gneiss-cored interference dome associated with two phjases of late Pan-African thrusting in the Central Eastern Desert, Egypt. Precambrian Research, v.108, p.17-34. https://doi.org/10.1016/S0301-9268(00)00146-7
  13. Kee, W.S., Koh, H.J., Kim, S.W., Kim, Y.B., Khim, Y.H., Kim, H.C., Park, S.-I., Song, K.Y., Lee, S.R., Lee, Y.S., Lee, H.J., Cho, D.R., Choi, B.Y., Choi, S.J. and Hwang, J.H. (2011) Tectonic evolution of the upper crustal units in the mid-western part of the Korean peninsula. Basic Research Report of the Korea Institute of Geoscience and Mineral Resources, 242p.
  14. Kim, H.S., Ree, J.-H. and Kim, J. (2012) Tectonometamorphic evolution of the Permo-Triassic Songrim (Indosinian) orogeny: Evidence from the late Paleozoic Pyeongan Supergroup in the northeastern Taebaeksan Basin, South Korea. International Journal of Earth Sciences, v.101, p.483-498. https://doi.org/10.1007/s00531-011-0683-x
  15. Kim, J.-N., Ree, J.-H, Kwon, S.-T., Park, Y., Choi, S.-J. and Cheong, C.-S. (2000) The Kyonggi Shear Zone of the Central Koran Peninsula: Late Orogenic Imprint of the North and South China Collision. The Journal of Geology, v.108, p.469-478. https://doi.org/10.1086/314412
  16. Kim, S.W., Oh, C.W., Williams, I.S., Rubatto, D. and Ryu, I.C. (2006) Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Massif, south Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, v.92, p.357-377. https://doi.org/10.1016/j.lithos.2006.03.050
  17. Kim, S.W., Williams, I.S., Kwon, S. and Oh, C.W. (2008) SHRIMP zircon geochronology and geochemical characteristics of metaplutonic rocks from the southwestern Gyeonggi Block, Korea: implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precambrian Research, v.162, p.475-497. https://doi.org/10.1016/j.precamres.2007.10.006
  18. Kim, S.W., Kee, W.-S., Lee, S.R., Santosh, M. and Kwon, S. (2013) Neoproterozoic plutonic rocks from the western Gyeonggi massif, South Korea: implications for the amalgamation and break-up of the Rodinia supercontinent. Precambrian Research, v.227, p.349-367. https://doi.org/10.1016/j.precamres.2012.01.014
  19. Kim, S.W, Park, S.-I., Ko, K., Lee, H.-J., Koh, H.J., Kihm, Y.H. and Lee, S.R. (2014a) 1:100,000 Tectonostratigraphic map of the Hongseong area, map 1 : solid geology interpretation. Korea Institute of Geoscience and Mineral Resources.
  20. Kim, S.W, Park, S.-I., Ko, K., Lee, H.-J., Koh, H.J., Kihm, Y.H. and Lee, S.R. (2014b) 1:100,000 Tectonostratigraphic map of the Hongseong area, map 2 : summary of geochronological and geochemical data. Korea Institute of Geoscience and Mineral Resources.
  21. Kim, S.W., Kwon, S., Park, S.-I., Yi, K., Santosh, M. and Ryu, I.-C. (2015) Early to Middle Paleozoic arc magmatism in the Korean Peninsula: Constraints from zircon geochronology and geochemistry. Journal of Asian Earth Sciences, v.113, p.866-882. https://doi.org/10.1016/j.jseaes.2015.09.017
  22. Kim, S.W., Kwon, S., Park, S.-I., Yi, K., Santosh, M. and Kim, H.S. (2017) Early to Middle Paleozoic tectonometamorphic evolution of the Hongseong area, central western Korean Peninsula: Tectonic implications. Gondwana Research, v.47, p.308-322. https://doi.org/10.1016/j.gr.2016.05.016
  23. Kwon, S., Sajeev, K., Mitra, G., Park, Y., Kim, S.W. and Ryu, I.-C. (2009) Evidence for Permo-Triassic collision in Far East Asia: The Korean collisional orogen. Earth and Planetary Science Letters, v.279, p.340-349. https://doi.org/10.1016/j.epsl.2009.01.016
  24. Lister, G.S. and Davis, G.A. (1989) The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, USA. Journal of Structural Geology, v.11, p.65-94. https://doi.org/10.1016/0191-8141(89)90036-9
  25. Malavieille, J., Guihot, P., Costa, S., Lardeaux, J.M., and Gardien, V. (1990) Collapse of thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St. Etienne Late Carboniferous basin. Tectonophysics, v.177, p.139-149. https://doi.org/10.1016/0040-1951(90)90278-G
  26. Oh, C.W. and Kusky, T.M. (2007) The Late Permian to Triassic Hongseong-Odaesan collision belt in South Korea, and its tectonic correlation with China and Japan. International Geology Review, v.49, p.636-657. https://doi.org/10.2747/0020-6814.49.7.636
  27. Oh, C.W., Kim, S.W., Choi, S.G., Zhai, M., Guo, J. and Sajeev, K. (2005) First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. The Journal of Geology, v.113, p.226-232. https://doi.org/10.1086/427671
  28. Oh, C.W., Imayama, T., Jeon, J. and Yi, K. (2017) Regional Middle Paleozoic metamorphism in the southwestern Gyeonggi massif, South Korea: Its implications for tectonics in Northeast Asia. Journal of Asian Earth Sciences, v.145, p.542-564. https://doi.org/10.1016/j.jseaes.2017.06.030
  29. Oh, J.-H. and Kim, S.W. (2013) Geochronological and Geochemical Studies for Triassic Plutons from the Wolhyeonri Complex in the Hongseong Area, Korea. Economic and Environmental Geology, v.46, p.391- 409 (in Korean with English abstract). https://doi.org/10.9719/EEG.2013.46.5.391
  30. Park, S.-I. and Kim, S.W. (2016) A Report on Gneiss Dome in the Hongseong Area, Southwestern Margin of the Gyeonggi massif. Economic and Environmental Geology, v.49, p.315-323 (in Korean with English abstract). https://doi.org/10.9719/EEG.2016.49.4.315
  31. Park, S.-I., Kim, S.W. and Kwon, S. (2012) Biotite K-Ar ages from the Hongseong area, southwestern Gyeonggi Massif: Implications. Journal of the Geological Society of Korea. v.48, p.249-258 (in Korean with English abstract).
  32. Park, S.-I., Kim, S.W., Kwon, S., Thanh, N.X., Yi, K. and Santosh, M. (2014a) Paleozoic tectonics of the southwestern Gyeonggi massif, South Korea: Insights from geochemistry, chromian-spinel chemistry and SHRIMP U-Pb geochemistry. Gondwana Research, v.26, p.684-698. https://doi.org/10.1016/j.gr.2013.07.015
  33. Park, S.-I., Kwon, S., Kim, S.W., Yi, K. and Santosh, M. (2014b) Continental origin of the Bibong eclogite, southwestern Gyeonggi massif, South Korea. Journal of Asian Earth Sciences, v.95, p.192-202. https://doi.org/10.1016/j.jseaes.2014.08.024
  34. Park, S.-I., Kim, S.W., Kwon, S., Santosh, M., Ko, K. and Kee, W.-S. (2017) Nature of Late Mesoproterozoic to Early Neoproterozoic magmatism in the western Gyeonggi massif, Korean Peninsula and its tectonic significance. Gondwana Research, v.47, p.291-307. https://doi.org/10.1016/j.gr.2016.11.006
  35. Passchier, C.W. and Trouw, R.A.J. (2005) Microtectonics, 2nd edition. Springer-Verlag, Berlin. 366p.
  36. Passchier, C.W. and Coelho, S. (2006) An outline of shearsense analysis in high-grade rocks. Gondwana Research, v.10, p.66-76. https://doi.org/10.1016/j.gr.2005.11.016
  37. Rey, P., Teyssier, C. and Whitney, D.L. (2009) Crustal melting and core complex dynamics. Geology, v.37, p.391-394. https://doi.org/10.1130/G25460A.1
  38. Rey, P.F., Teyssier, C., Kruckenberg, S.C. and Whitney, D.L. (2011) Viscous collision in channel explains double domes in metamorphic core complexes. Geology, v.39, p.387-390. https://doi.org/10.1130/G31587.1
  39. Sajeev, K., Jeong, J., Kwon, S., Kee, W.-S., Kim, S.W., Komiya, T., Itaya, T., Jung, H.-S. and Park, Y. (2010) High P-T granulite relicts from the Imjingang belt, South Korea: Tectonic significance. Gondwana Research, v.17, p.75-86. https://doi.org/10.1016/j.gr.2009.07.001
  40. Scott, R.J. and Lister, G.S. (1992) Detachment faults: Evidence for a low-angle origin. Geology, v.20, p.833-836. https://doi.org/10.1130/0091-7613(1992)020<0833:DFEFAL>2.3.CO;2
  41. Teyssier, C. and Whitney, D.L. (2002) Gneiss domes and orogeny. Geology, v.30, p.1139-1142. https://doi.org/10.1130/0091-7613(2002)030<1139:GDAO>2.0.CO;2
  42. Vanderhaeghe, O. and Teyssier, C. (2001) Partial melting and flow of orogens. Tectonophysics, v.342, p.451-472. https://doi.org/10.1016/S0040-1951(01)00175-5
  43. Vanderhaeghe, O., Teyssier, C. and Wysoczanski, R. (1999) Structural and geochronological constraints on the role of partial melting during the formation of the Shuswap metamorphic core complex at the latitude of the Thor-Odin dome, British Columbia. Canadian Journal of Earth Sciences, v.36. p.917-943. https://doi.org/10.1139/e99-023
  44. Whitney, D.L., Teyssier, C. and Vanderhaeghe, O (2004) Gneiss domes and crustal flow. In: Whitney, D.L., Teyssier, C. and Siddoway, C.S. (ed.) Gneiss domes in orogeny. Geological Society of America Special Paper, v.380, p.15-33.
  45. Whitney, D.L., Teyssier, C., Rey, P. and Buck, W.R. (2013) Continental and Oceanic core complexes. Geological Society of America Bulletin, v.125, 273-298. https://doi.org/10.1130/B30754.1
  46. Williams, I.S., Cho, D.L. and Kim, S.W. (2009) Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: constraints on Triassic post-collisional magmatism. Lithos, v.107, p.239-256. https://doi.org/10.1016/j.lithos.2008.10.017
  47. Xiao, W., Windley, B.F., Hao, Z. and Zhai, M. (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian Orogenic belt. Tectonics, v.22, doi:10.1029/2002TC001484.
  48. Zhai, M., Guo, J., Li, Z., Chen, D., Peng, P., Li, T., Hou, Q. and Fan, Q. (2007) Linking the Sulu UHP belt to the Koren Peninsula: Evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins. Gondwana Research, v.12, p.388-403. https://doi.org/10.1016/j.gr.2007.02.003