DOI QR코드

DOI QR Code

Effect of Prolonged Waterlogging on Growth and Yield of Characteristics of Maize (Zea mays L.) at Early Vegetative Stage

유묘기 장기간 습해처리에 따른 옥수수의 생육 및 수량 특성 변화

  • 신성휴 (농촌진흥청 연구정책국) ;
  • 정건호 (국립식량과학원 중부작물부) ;
  • 김성국 (국립식량과학원 중부작물부) ;
  • 손범영 (국립식량과학원 중부작물부) ;
  • 김상곤 (국립식량과학원 중부작물부) ;
  • 이진석 (국립식량과학원 중부작물부) ;
  • 김정태 (국립식량과학원 중부작물부) ;
  • 배환희 (국립식량과학원 중부작물부) ;
  • 권영업 (국립식량과학원 중부작물부) ;
  • 심강보 (국립식량과학원 중부작물부) ;
  • 이재은 (국립식량과학원 중부작물부) ;
  • 백성범 (국립식량과학원 중부작물부) ;
  • 전원태 (국립식량과학원 중부작물부)
  • Received : 2017.08.17
  • Accepted : 2017.10.30
  • Published : 2017.12.31

Abstract

Waterlogging strongly affects maize (Zea mays L.) growth. It is necessary to find the screening method of waterlogging tolerant maize lines. This study was to investigate the growth characters at V3 stage of maize, when is very sensitive to waterlogging. Six Korean maize inbred lines were subjected to waterlogging at V3 stage for 30 days. The 30 days waterlogging treatment significantly reduced plant height, number of expanded leaves, and SPAD value, compared with the control plants. SPAD values were significantly different among the six inbred lines, KS140 was the highest. The dry matter accumulation of aerial and root part were significantly decreased by 30 days waterlogging. KS140 was the weightiest among inbred lines. The dry matter of adventitious root showed same trend. Waterlogging treatment significantly reduced to ear length and thickness, grains filling length, grain number per ear, and maize grain. Plant height, SPAD value, and number of fully-expanded leave showed high correlation with maize grain yield, but number of senescent leaves, dry matter of adventitious root and TR ratio did not, suggesting that the former three traits may be good indicator for evaluating 30-day waterlogging tolerance of maize inbred lines. KS164 was the highest yield by increasing of grains filling length and grain number per ear of among waterlogging inbred lines. According to the results, evaluation of maize waterlogging should be consider both early growth characteristics and resilience in the later growth stages.

본 연구는 사료용 옥수수의 내습성 검정을 위한 기초자료를 얻고자 자식 6계통을 3엽기에 30일간 습해 처리 후 옥수수의 생육 특성 및 수량 변화를 구명하고자 농촌진흥청 국립식량과학원 중부작물부 시험포장(온실)에서 수행한 결과를 요약하면 다음과 같다. 1. 습해 처리 시 모든 자식 계통이 무처리에 비하여 초장, 완전전개엽수 및 엽색도(SPAD)는 모든 계통에서 유의적으로 감소하였으며 엽색도는 KS140 계통이 높았고 KS141 계통이 낮았다. 2. 지상부와 뿌리의 건물중은 습해처리 후 모든 계통이 유의적으로 감소하였으며 자식 계통들 간에는 KS140이 가장 많았고 KS163이 가장 적었다. 부정근의 건물중은 무처리와 유의적 차이는 없었으나 KS140 계통에서 높은 경향을 보였다. 3. 수확기 옥수수의 이삭길이와 두께 및 착립이삭길이, 개체당 종실수 모두 무처리에 비하여 유의적으로 감소하였다. 무처리에 비하여 이삭 길이와 두께는 KS141 계통이 착립 이삭길와 개체당 종실수에서는 KS164 계통이 가장 적게 감소하였다. 4. 옥수수 수량은 무처리에 비하여 습해 처리한 모든 계통에서 유의적으로 감소하였으나 습해 처리 계통들 간에는 KS164 계통만 유의적으로 수량이 높아 내습성인 것으로 판단하였다. 5. 옥수수 유묘기 30일간 습해처리시 초장, 엽색도(SPAD값), 완전전개엽수가 옥수수 수량과 상관이 높았다.

Keywords

References

  1. Ashraf, M., and Rehman, H. 1999. Mineral nutrient status of corn in relation to nitrate and long-term waterlogging. Journal of Plant Nutrition. 22:1253-1268. https://doi.org/10.1080/01904169909365710
  2. Beak, S.B., Lee, J.S., Kim, S.L., Shon, B.Y., Jung, G.F., Shin, S.H., Kim, J.T., and Kim, S.K., 2013. Maize. RDA (in Korean).
  3. Blokhina, O. 2000. Anoxia and oxidative stress : Lipid periodization, antioxidant status and mitochondria functions in plants. Academic Dissertation, Department of Bioscience Division of plant physiology, University of Helsinki. pp. 11-34.
  4. Campbell, M.T., Proctor, C.A., Dou, Y, Schmitz, A.J., Phansak, P., Kruger, G.R., Zhang, C., and Walia, H. 2015. Genetic and molecular characterization of submergence response identifies Subtol6 as a major submergence tolerance locus in maize. PLoS One 10: e0120385. doi: 10.1371/journal.pone.0120385.
  5. Dennis, E.S., Dolferus, R., Ellis, M., Rahman, M., Wu, Y., Hoeren, F.U., Grover, A., Ismond, K.P., Good, A.G., and Peacock, W.J. 2000. Molecular strategies for improving waterlogging tolerance in plants. journal of Experimental Botany. 51:89-97. https://doi.org/10.1093/jexbot/51.342.89
  6. Hochholdinger, F., and Tuberrosa, R. 2009. Genetic and genomic dissection of maize root development and architecture. current opinion in plant Biology. 12:172-177. https://doi.org/10.1016/j.pbi.2008.12.002
  7. Jung, G.H., Moon, J.G., Seo, J.H., and Seo, M.J., 2015. Studies on the mechanism of excess water stress for stable production of upland crops in paddy field. Research report (National Institute of Crop Science). 416-454 (in Korean).
  8. Kozlowski, T.T. 1984. Extent, causes, and impacts of flooding. In: Kozlowski T T, ed, Flooding and Plant Growth. Academic Press, New York. pp. 1-7.
  9. Liu, Y.Z., Tang, B., Zheng, Y.L., Ma, K.J., Xu, S.Z., and Qiu, F.Z. 2010. Screening methods for waterlogging tolerance at maize (Zea mays L.) seedling stage. Agricultural Sciences in China. 9:362-369. https://doi.org/10.1016/S1671-2927(09)60105-X
  10. Musgrave, M. E., and Ding, N. 1998. Evaluating wheat cultivars for waterlogging tolerance. Crop Science. 38:90-97. https://doi.org/10.2135/cropsci1998.0011183X003800010016x
  11. Ren, B., Zhang, J., Dong, S., Liu, P., and Zhao, B. 2016. Effects of waterlogging on Leaf Mesophyll Cell Ultrastructure and photosynthetic Characteristics of Summer Maize. PLoS ONE. 11:e0161424. doi:10.1371/journal.pone.0161424.
  12. Semthurst, C.F, and Shabala, S. 2003. Screening methods for waterlogging tolerance in Lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Functional Plant Biology. 30:335-343. https://doi.org/10.1071/FP02192
  13. Shin, S.H., Kim, S.K., Jung, G.H., Kim, C.G., Son, B.Y., Kim, J.T., Kim, S.G., Yang, W.H., Kwon, Y.U., Shim, K.B., and Woo, M.K. 2016. Evaluation of Waterlogging Tolerance with the Degree of Foliar Senescence at Early Vegetative Stage of Maize (Zea Mays L.), Journal of Crop Science and Biotechnology. 19:267-274.
  14. Subbaiah, C.C., and Sachs, M.M. 2003. Molecular and cellar adaptations of maize to flooding stress. Annals of Botany. 91:119-127. https://doi.org/10.1093/aob/mcf210
  15. Yan, B., Dai, Q., Liu, X., Huang, S., and Wang, Z. 1996. Floodinginduced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. pLANT sOIL. 179:261-268. https://doi.org/10.1007/BF00009336
  16. Zaidi, P.H., Rafique, S., Rai, P.K., Singh, N.N., and Srinivasan, G. 2001. Tolerance to excess moisture in maize: susceptible crop stages and identification of tolerant genotypes. Field Crops Research. 90:189-20.