DOI QR코드

DOI QR Code

A Study on the Thermal Characteristics of a Coupler to Improve the Performance of Electrodeless Lamp

무전극 램프의 성능 향상을 위한 커플러의 열특성 연구

  • Lee, Kye-Seung (Department of Electronic Engineering, Catholic Kwandong University) ;
  • Lee, Jae-Min (Department of Electronic Engineering, Catholic Kwandong University)
  • Received : 2017.10.19
  • Accepted : 2017.10.30
  • Published : 2017.12.30

Abstract

The thermal characteristics of the electrodeless lamp are one of the main factors that determine the design and performance of the lamp. The coupler changes the impedance characteristic by heat and its use temperature is usually within about $150^{\circ}C$. In this study, we observed the phenomenon when the coupler was exposed at a temperature of $150^{\circ}C$ or higher, which has not been discussed so far. Two types of coupler A and coupler B with different spacing between the inner tube and the coupler were analyzed for electrical, thermal and optical properties and deterioration characteristics with different heat and heat shielding conditions. First, the impedance of the system is obtained and used as a criterion for analyzing the electrical characteristics through it. The diameters of the two types of couplers are 1 mm, and the experimental result shows that the coupler diameter is 1 mm, which can cancel out the loss of the magnetic field strength. Therefore, based on these results, when the coupler is exposed to high temperature of about $200^{\circ}C$, the efficient design method corresponding thereto is proposed.

무전극 램프의 열특성은 램프의 설계와 성능을 결정하는 주요 요소 중 하나이다. 커플러는 열에 의해 임피던스 특성이 변화하며 그 사용온도가 보통 약 $150^{\circ}C$ 이내이다. 본 연구에서는 지금까지 논외였던 $150^{\circ}C$ 이상의 온도에 커플러가 노출되었을 때의 현상에 대해 관찰하였다. 벌브의 안쪽 내관과 커플러와의 이격거리가 다른 두 종류의 커플러 A와 커플러 B에 대해 방열 조건과 열 차단 조건을 달리하여 전기적 특성, 열적 특성, 광학적 특성과의 연계성 및 열화 특성 등을 분석하였다. 우선 시스템의 임피던스를 구하여 이를 통한 전기적 특성을 분석하는 기준으로 삼았다. 두 종류의 커플러의 직경차는 1mm이며, 실험 결과에서 커플러의 직경이 1mm 작아서 발생하는 자계강도의 손실을 상쇄할 수 있는 조건을 찾을 수 있었다. 따라서 이러한 결과를 토대로 커플러가 약 $200^{\circ}C$의 고온에 노출될 때, 이에 대응하는 효율적인 설계 방안을 제시하였다.

Keywords

References

  1. E. Statnic, V. Tanach,, A New Approach to The Evaluation of The Discharge Parameters of The Electrodeless Fluorescent Lamps, Plasma Sources Science & Technology, Vol. 13, pp. 515-521, 2004. https://doi.org/10.1088/0963-0252/13/3/018
  2. X. Yang, M. Cheng, D. Guo, M. Wang, X. Li, Characteristics of Temporal Evolution of Particle Density and Electron Temperatu-re in Hellicon Discharge, Plasma Sci. Tech-nol., Vol. 13, 105402 (9pp.), 2017.
  3. Y. I. Chung, D. C. Jung, D. H. Park, Y. K. Kim, A Study on The Characteristic Analysis and Optimization According to Ballast Design of Induction Lamp, JKIIECT, Vol. 10. No. 1, Feb. 2017.
  4. T. Uetsuki, M. Ueda, S. Nimata, M. Saimi, H. Kakehashi, Effect of Operating Frequen-cy on Characteristics of Inductively Coupled Electro-deless Lamp, J. Light & Vis. Env., Vol. 34, No. 1, 2010.
  5. K. M. Cho, W. S. Oh, J. E. Yeon, D. S. Kim, H. J. Kim, Electronic Ballast of the Elec-trodeless Lamp for the Group Lighting System, Conference Paper, 53 Reads, Decem- ber 2009.
  6. U. H. Jeong, J. P. Hyung, S. Y. Lim, H. W. Lim, J. S. Jang, High Temperature Reliabil-ity Study of Low Frequency In-door Electro-deless Lamp, International Journal of Relia-bility and Applications, Vol. 14, No. 3, pp. 203-207, 2014.
  7. B. Yaakov, S. Shvartsas, M., A Behavioral SPICE Compatible Model of an Electrodeless Fluorescent Lamp, IEEA APEC, pp. 948-954, 2002.
  8. O. A Popov and R. Chandler, Ferrite- free High Power Electrodeless Fluorescent Lamp Operated at a Frequency of 160-1000kHz, Plasma Sources Sci. Technol. 11, pp. 218-227, 2002. https://doi.org/10.1088/0963-0252/11/2/314
  9. D. Silva, M. F. Chagas, N. B. Fraytag, J. Marchesan, R. N. Bisogno, F. E. Pinto, R. A. Prado, N. Ricardo, Model for Electrical Characteristics of Electrodeless Fluorescent Lamps, Industry Applications (INDUSCON), 2012 10th IEEE/IAS International Conference on 2012 Nov, pp. 1-6, 2012.
  10. T. Eichhorn, Estimate Inductor Losses Easily in Power Supply Designs, Power Electro- nics Technology, 2005.
  11. S. W. Lee, Design of an Inductively Coupled Plasma Source with Consideration of Electrical Properties, Journal of the Korean Vacuum Society, Vol. 18, No. 3, pp 176-185, 2009. https://doi.org/10.5757/JKVS.2009.18.3.176
  12. Q. Long, Y. Chen, D. Chen, Hysteresis and Mode Transitions in Inductively coupled Ar-Hg Plasma in the Electrodeless Induction Lamp, Journal of physics. Applied Physics, v.39, no.15, pp. 3310-3316, 2006. https://doi.org/10.1088/0022-3727/39/15/013
  13. E. Statnic, V. Tanach, Investigation of the Electrical Discharge Parameters in Eectrode-less Inductive Lamps with a Reentrant Coupler and Magnetic core, Plasma Sources Science & Technology, Vol. 15, No. 3, pp. 465-473, 2006. https://doi.org/10.1088/0963-0252/15/3/023
  14. H. Katsumi, K. Harada, Y. Ishihara, T. Toda-ka, F. Okamoto, A Study of Winding Losses in an Induction Coil and Radiated Emissions of Electrodeless Lamps, T. IEE Japan, Vol. 122-A, No. 8, 2002.
  15. S. W. Cho, J. Y. Bang, Y. K. Lee, C. W. Chung, The Impedance Matching Network for A Ferromagnetic Inductively Coupled Pl-asma Driven at 400 kHz, Journal of The Semiconductor & Display Equipment Tech- nology, Vol. 6, No. 2, June 2007.