DOI QR코드

DOI QR Code

Model Tests and GIMP (Generalized Interpolation Material Point Method) Simulations of Ground Cave-ins by Strength Reduction due to Saturation

불포화 강도 유실에 의한 지반함몰 현상의 모형 실험 재현 및 일반 보간 재료점법을 활용한 수치적 모사

  • Lee, Minho (Dept. of Civil and Environmental Engrg., Seoul National Univ.) ;
  • Woo, Sang Inn (Institute of Engrg. Research, Seoul National Univ.) ;
  • Chung, Choong-Ki (Dept. of Civil and Environmental Engrg., Seoul National Univ.)
  • 이민호 (서울대학교 건설환경공학과) ;
  • 우상인 (서울대학교 공학연구원) ;
  • 정충기 (서울대학교 건설환경공학과)
  • Received : 2017.11.01
  • Accepted : 2017.11.22
  • Published : 2017.12.31

Abstract

This study presents direct shear tests, model tests, and numerical simulations to assess the effect of reduction of soil strength because of saturation during formation of ground cave-in caused by damaged sewer pipe lines. The direct shear test results show that the saturation affects the cohesion of soil significantly although it does not influence the friction angle of soil. To experimentally reproduce ground cave-in, the model tests were performed. As ground cave-ins were accompanied with extreme deformation, conventional finite element method has difficulty in simulating them. The present study relies on generalized interpolation material point method, which is one of meshless methods. Although there are differences between the model test and numerical simulation caused by boundary conditions, incomplete saturation, and exclusion of groundwater flow, similar ground deformation characteristics are observed both in the model test and numerical simulation.

본 연구에서는 하수관 손상에 의한 지반함몰 발생 과정에서 지반의 포화도 상승에 따른 흙의 불포화 강도 저하의 영향을 파악하기 위하여, 직접 전단 실험, 모형 실험, 그리고 수치해석을 수행하였다. 직접 전단 시험 결과, 흙의 마찰각은 포화도의 영향을 크게 받지 않으나, 점착력은 포화도의 영향을 크게 받음을 알 수 있다. 포화도 상승에 따른 강도저하의 영향만을 고려하기 위하여, 물의 침투효과를 배제한 모형 실험을 실시하여 지반 함몰 현상을 재현하였다. 지반 함몰은 대변위를 동반하며, 기존 유한요소법의 적용이 어렵다. 본 연구에서는 대변위 해석 기법인 일반 보간 재료점법을 사용하여 수행한 모형실험을 수치적으로 모사하였다. 비록 경계 조건 차이, 불완전 포화, 손상부 연결관의 폐색등에 의해 함몰 시간 등에는 차이가 있었지만, 유사한 토체의 변형 거동이 모형 실험과 수치해석에서 발견되었다.

Keywords

References

  1. Al-Kafaji, I. K. J. (2013), "Formulation of a Dynamic Material Point Method (MPM) for Geomechanical Problems", Universitat Stuttgart, Stuttgart, Germany.
  2. ASTM D3080-04. (2011), "Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained", Annual Book of ASTM Standards, 1-7.
  3. Bardenhagen, S. G. (2002), "Energy Conservation Error in the Material Point Method for Solid Mechanics", Journal of Computational Physics, Vol.180, No.1, pp.383-403. https://doi.org/10.1006/jcph.2002.7103
  4. Bardenhagen, S. G., Guilkey, J. E., Roessig, K. M., Brackbill, J. U., Witzel, W. M., Foster, J. C., Method, M. P., and Propagation, W. (2001), "An Improved Contact Algorithm for the Material Point Method and Application to Stress Propagation in Granular Material", Computer Modeling in Engineering and Sciences, Vol.2, No.4, pp.509-522.
  5. Bardenhagen, S. G. and Kober, E. M. (2004), "The Generalized Interpolation Material Point Method", Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp.477-495.
  6. Brackbill, J. U., Kothe, D. B., and Ruppel, H. M. (1988), "Flip: A Low-dissipation, Particle-in-cell Method for Fluid Flow", Computer Physics Communications, Vol.48, No.1, pp.25-38. https://doi.org/10.1016/0010-4655(88)90020-3
  7. Harlow, F. H. (1957), "Hydrodynamic Problems Involving Large Fluid Distortions", Journal of the ACM, Vol.4, No.2, pp.137-142. https://doi.org/10.1145/320868.320871
  8. Hu, Y. and Randolph, M. F. (1998), "H-adaptive FE Analysis of Elasto-plastic Non-homogeneous Soil with Large Deformation", Computers and Geotechnics, 23, pp.61-83. https://doi.org/10.1016/S0266-352X(98)00012-3
  9. Kardani, M., Nazem, M., Abbo, A. J., Sheng, D., and Sloan, S. W. (2012), "Refined h-adaptive Finite Element Procedure for Large Deformation Geotechnical Problems", Computational Mechanics, 49, pp.21-33. https://doi.org/10.1007/s00466-011-0624-3
  10. Kardani, M., Nazem, M., Sheng, D., and Carter, J. P. (2013), "Large Deformation Analysis of Geomechanics Problems by a Combined rh-adaptive Finite Element Method", Computers and Geotechnics, 49, pp.90-99. https://doi.org/10.1016/j.compgeo.2012.09.013
  11. Kim, M. and Kim, Y. (2010), "Shear Strength of Weathered Granite Soil Considering Change of Saturation", Journal of the Korean Geoenvironmental Society, Vol.11, No.9, pp.5-14.
  12. Kuwano, R., Sato, M., and Sera, R. (2010), "Study on the Detection of Underground Cavity and Ground Loosening for the Prevention of Ground Cave-in Accident", Japanese Geotechnical Journal, Vol.5, No.2, pp.349-361. https://doi.org/10.3208/jgs.5.349
  13. Lian, Y. P., Zhang, X., Zhang, F., and Cui, X. X. (2014), "Tied Interface Grid Material Point Method for Problems with Localized Extreme Deformation", International Journal of Impact Engineering, Elsevier Ltd, 70, pp.50-61. https://doi.org/10.1016/j.ijimpeng.2014.03.008
  14. Ma, J., Wang, D., and Randolph, M. F. (2014), "A New Contact Algorithm in the Material Point Method for Geotechnical Simulations", International Journal for Numerical and Analytical Methods in Geomechanics, 38(March), pp.1197-1210. https://doi.org/10.1002/nag.2266
  15. Mast, C. M., Arduino, P., Miller, G. R., and Mackenzie-Helnwein, P. (2014), "Avalanche and Landslide Simulation Using the Material Point Method: Flow Dynamics and Force Interaction with Structures", Computational Geosciences, 18, pp.817-830. https://doi.org/10.1007/s10596-014-9428-9
  16. Nairn, J. A. and Guilkey, J. E. (2015), "Axisymmetric form of the Generalized Interpolation Material Point Method", International Journal for Numerical Methods in Engineering, 101, pp.127-147. https://doi.org/10.1002/nme.4792
  17. Nazem, M., Sheng, D., and Carter, J. P. (2006), "Stress Integration and Mesh Refinement for Large Deformation in Geomechanics", International Journal for Numerical Methods in Engineering, 65, pp.1002-1027. https://doi.org/10.1002/nme.1470
  18. Phuong, N. T. V., van Tol, A. F., Elkadi, A. S. K., and Rohe, A. (2014), "Modelling of Pile Installation Using the Material Point Method (MPM)", Numerical methods in Geotechnical engineering, pp.271-276.
  19. Phuong, N. T. V., van Tol, A. F., Elkadi, A. S. K., and Rohe, A. (2016), "Numerical Investigation of Pile Installation Effects in Sand Using Material Point Method", Computers and Geotechnics, Elsevier Ltd, 73, pp.58-71. https://doi.org/10.1016/j.compgeo.2015.11.012
  20. Rogers, C. (1986), Sewer deterioration studies the background to thestructural assessment procedure in the sewerage rehabilitationmanual. WRC Report ER199E.
  21. Sadeghirad, A., Brannon, R. M., and Guilkey, J. E. (2013), "Secondorder Convected Particle Domain Interpolation (CPDI2) with Enrichment for Weak Discontinuities at Material Interfaces", International Journal for Numerical Methods in Engineering, Vol.95, No.11, pp.923-952.
  22. Seoul Metropolitan Goverment. (2017), "Seoul Metropolitan Goverment Invests 130.6 Billion won to Repair Sewage Pipe Lines to Prevent Ground Cave-ins", Seoul Metropolitan Goverment Press Releases, Seoul.
  23. Sloan, S. W. and Booker, J. R. (1986), "Removal of Singularities in Tresca and Mohr-Coulomb Yield Functions", Communications in Applied Numerical Methods, 2, pp.173-179. https://doi.org/10.1002/cnm.1630020208
  24. Solowski, W. T. and Sloan, S. W. (2015), "Evaluation of Material Point Method for Use in Geotechnics", International Journal for Numerical and Analytical Methods in Geomechanics, 39, pp.685-701. https://doi.org/10.1002/nag.2321
  25. Sulsky, D., Chen, Z., and Schreyer, H. L. (1994), "A Particle Method for History-dependent Materials," Computer Methods in Applied Mechanics and Engineering, 118, pp.179-196. https://doi.org/10.1016/0045-7825(94)90112-0
  26. Tan, H. and Nairn, J. A. (2002), "Hierarchical, Adaptive, Material Point Method for Dynamic Energy Release Rate Calculations", Computer Methods in Applied Mechanics and Engineering, 191 (19-20), pp.2095-2109.
  27. Tehrani, F. S., Nguyen, P., Brinkgreve, R. B. J., and van Tol, A. F. (2016), "Comparison of Press-Replace Method and Material Point Method for analysis of jacked piles", Computers and Geotechnics, Elsevier Ltd, 78, pp.38-53. https://doi.org/10.1016/j.compgeo.2016.04.017
  28. Vavourakis, V., Loukidis, D., Charmpis, D. C., and Papanastasiou, P. (2013), "A Robust Finite Element Approach for Large Deformation Elastoplastic Plane-strain Problems", Finite Elements in Analysis and Design, Elsevier, 77, pp.1-15. https://doi.org/10.1016/j.finel.2013.08.003
  29. Wallstedt, P. C. and Guilkey, J. E. (2008), "An Evaluation of Explicit Time Integration Schemes For Use with the Generalized Interpolation Material Point Method", Journal of Computational Physics, Vol.227, No.22, pp.9628-9642. https://doi.org/10.1016/j.jcp.2008.07.019
  30. Woo, S. I. and Salgado, R. (2017), "Simulation of Penetration of a Foundation Element in Tresca Soil Using the Generalized Interpolation Material Point Method (GIMP)", Computers and Geotechnics.