DOI QR코드

DOI QR Code

Effects of Grain Size Distribution on the Shear Strength and Rheological Properties of Debris Flow Using Direct Shear Apparatus

직접전단장비를 이용한 토석류의 전단강도 및 유변학적 특성에 대한 입도분포의 영향 연구

  • Park, Geun-Woo (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Hong, Won-Taek (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Hong, Young-Ho (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Jeong, Sueng-Won (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 박근우 (고려대학교 건축사회환경공학화) ;
  • 홍원택 (고려대학교 건축사회환경공학화) ;
  • 홍영호 (고려대학교 건축사회환경공학화) ;
  • 정승원 (한국지질자원연구원 지질환경재해연구센터) ;
  • 이종섭 (고려대학교 건축사회환경공학화)
  • Received : 2017.08.08
  • Accepted : 2017.11.27
  • Published : 2017.12.31

Abstract

In this study, effects of grain size distribution on the shear strength and rheological properties are investigated for coarse- and fine-grained soils by using direct shear apparatus. Shear strengths are estimated for fine-grained soils with the maximum particle size of 0.075 mm and coarse-grained soils with the maximum particle size of 0.425 mm and fine contents of 17% prepared at dry and liquid limit states. The direct shear tests are conducted under the relatively slow shear velocity, which corresponds to the reactivated landslide or debris flow after collapse according to the landslide classification. In addition, for the evaluation of rheological properties, residual shear strengths for both fine- and coarsegrained soils prepared under liquid limit states are obtained by multiple reversal shear tests under three shear velocities. From the relationship between residual shear strengths and shear rates, Bingham plastic viscosity and yield stress are estimated. The direct shear tests show that cohesions of fine-grained soil are greater than those of coarse-grained soil at both dry and liquid limit states. However, internal friction angles of fine-grained soil are smaller than those of coarse-grained soil. In case of rheological parameters, the plastic viscosity and yield stress of fine-grained soils are greater than those of coarse-grained soils. This study may be effectively used for the prediction of the reactivated landslide or debris flow after collapse.

본 연구에서는 전단특성 및 유변학적 정수를 모두 산정할 수 있는 직접전단실험 장비를 이용하여 조립토와 세립토에 대하여 전단강도 및 유변학적 특성에 대한 입도분포의 영향을 조사하고자 하였다. 최대입경 0.075mm의 세립토와 최대입경이 0.425mm이고, 세립분 함량이 17%인 조립토를 건조상태와 액성한계상태로 조성하여, 산사태 분류기준에 따라 재활성 산사태(reactivated landslide) 혹은 붕괴직후 토석류 속도에 해당하는 전단속도에 대하여 전단강도를 산정하였다. 또한, 유변학적 특성 평가를 위해 액성한계상태로 조성된 조립토와 세립토에 대하여 서로 다른 세 가지의 전단변형률속도로 반복적으로 전단하며 잔류전단강도를 측정하였다. 측정된 잔류전단강도와 전단변형률속도와의 관계를 통해 빙햄모델의 소성 점도와 항복응력을 산정하였다. 건조 및 액성한계상태에서 조성된 시료에 대하여 첨두전단강도에서 산정한 점착력의 경우, 세립토에서 조립토보다 더 크게 산정되었으며, 내부마찰각은 조립토에서 더 크게 산정되었다. 유변학 정수의 경우, 소성 점도와 항복응력이 조립토보다 세립토에서 더 큰 것으로 나타났다. 본 연구는 재활성 산사태 혹은 붕괴직후 토석류의 거동예측에 효과적으로 활용될 것으로 기대된다.

Keywords

References

  1. ASTM D422 (2007), "Standard Test Method for Particle-size Analysis of Soils", The American Society for Testing and Materials, West Conshohocken, United States.
  2. ASTM D854 (2009), "Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer", The American Society for Testing and Materials, West Conshohocken, United States.
  3. ASTM D4318 (2005), "Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils", The American Society for Testing and Materials, West Conshohocken, United States.
  4. ASTM D4253 (2006), "Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table", The American Society for Testing and Materials, West Conshohocken, United States.
  5. ASTM D4254 (2006), "Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density", The American Society for Testing and Materials, West Conshohocken, United States.
  6. Bareither, C. A., Edil, T. B., Benson, C. H., and Mickelson, D. M. (2008), "Geological and Physical Factors Affecting the Friction Angle of Compacted Sands", Journal of Geotechnical and Geoenvironmental Engineering, Vol.134, No.10, pp.1476-1489. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1476)
  7. Byun, Y. H., Tran, M. K., Yun, T. S., and Lee, J. S. (2012), "Strength and Stiffness Characteristics of Unsaturated Hydrophobic Granular Media", Geotechnical Testing Journal, Vol.35, No.1, pp. 199-200.
  8. Choi, H. G. (2007), Ground disaster engineering, Wongisul, Seoul, 253p.
  9. Chok, Y. H., Jaksa, M. B., Kaggwa, W. S., and Griffiths, D. V. (2015), "Assessing the Influence of Root Reinforcement on Slope Stability by Finite Elements", International Journal of Geo-Engineering, Vol.6, Paper No.12 (DOI 10.1186/s40703-015-0012-5).
  10. Contreras, S. M. and Davies, T. R. (2000), "Coarse-grained Debrisflows: Hysteresis and Time-dependent Rheology", Journal of Hydraulic Engineering, Vol.126, No.12, pp.938-941. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:12(938)
  11. Duttine, A., Tatsuoka, F., Kongkitkul, W., and Hirakawa, D. (2008), "Viscous behaviour of Unbound Granular Materials in Direct Shear", Soils and Foundations, Vol.48, No.3, pp.297-318. https://doi.org/10.3208/sandf.48.297
  12. Head, K. H. (2011), Manual of Soil Laboratory Testing: Volume Two: Permeability, Shear Strength and Compressibility Tests, John Wiley and Sons, New York-Toronto, 440p.
  13. Hong, Y. H., Byun, Y. H., Chae, J. G., and Lee, J. S. (2015), "Shear Behavior of Sands Depending on Shear Box Type in Direct Shear Test", Journal of the Korean Geotechnical Society, Vol.31, No.3, pp.51-62. https://doi.org/10.7843/KGS.2015.31.3.51
  14. Hwang, G. N. and Jo, Y. S. (2002), "Settling Characteristics of Saemankeum Fine-Cohesiv Sediments: Effects of Physico-Chemical Properties", Journal of Korea Water Resources Association, Vol.35, No.5, pp.475-484. https://doi.org/10.3741/JKWRA.2002.35.5.475
  15. Ilori, A. O., Udoh, N. E., and Umenge, J. I. (2017), "Determination of Soil Shear Properties on a Soil to Concrete Interface Using a Direct Shear Box Apparatus", International Journal of Geo-Engineering, Vol.8, Paper No.17 (DOI 10.1186/s40703-017-0055-x).
  16. Imran, J., Harff, P., and Parker, G. (2001), "A Numerical Model of Submarine Debris Flow with Graphical User Interface", Computers & geosciences, Vol.27, No.6, pp.717-729. https://doi.org/10.1016/S0098-3004(00)00124-2
  17. IUGS/WGL. (1995), International Union of Geological Science Working Group on Landslides, 1995, A suggested method for describing the rate of movement of a landslide. IAEG Bulletin, 52, pp.75-78.
  18. Jeong, S. W. (2013), "Debris Flow Mobility: A Comparison of Weathered Soils and Clay-rich Soils", Journal of the Korean Geotechnical Society, Vol.29, No.1, pp.23-27. https://doi.org/10.7843/kgs.2013.29.1.23
  19. Julien, P. Y. and Leon, C. (2000), "Mud Floods, Mudflows and Debris Flows. Classification, Rheology and Structural Design", Proc., Int. Workshop on the Debris Flow Disaster of December 1999 in Venezuela, Universidad Central de Venezuela, Caracas, Venezuela.
  20. Karim, M. E. and Alam, M. J. (2017), "Effect of Nonplastic Silt Content on Undrained Shear Strength of Sand-silt Mixtures", International Journal of Geo-Engineering, Vol.8, Paper No.14 (DOI 10.1186/s40703-017-0051-1).
  21. Kim, B. S., Shibuya, S., Park, S. W., and Kato, S. (2012), "Effect of Opening on the Shear behavior of Granular Materials in Direct Shear Test", KSCE Journal of Civil Engineering, Vol.16, No.7, pp.1132-1142. https://doi.org/10.1007/s12205-012-1518-4
  22. Lee, C. W. (2005), "Trends of Deaths and Missings Caused by Narural and Sediment Disasters in Korea", Journal of Korean Forest Society, Vol.94, No.4, pp.252-257.
  23. Lee, J. S., Song, C. G., Kim, H. T., and Lee, S. O. (2015), "Risk Analysis Considering the Topography Characteristics of Debris Flow Occurrence Area", Journal of Korean Society of Hazard Mitigation, Vol.15, No.3, pp.75-82. https://doi.org/10.9798/KOSHAM.2015.15.3.75
  24. Mahajan, S. P. and Budhu, M. (2006), "Viscous Effects on Penetrating Shafts in Clays", Acta Geotechnica, No.1(3), pp.157-165. https://doi.org/10.1007/s11440-006-0014-8
  25. Mahajan, S. P. and Budhu, M. (2008), "Shear Viscosity of Clays to Compute Viscous Resistance", In Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India.
  26. Maranzano, B. J. and Wagner, N. J. (2001), "The Effects of Particle Size on Reversible Shear Thickening of Concentrated Colloidal Dispersions", The Journal of Chemical Physics, Vol.114, No.23, pp.10514-10527. https://doi.org/10.1063/1.1373687
  27. Mesri, G. and Cepeda-Diaz, A. F. (1986), "Residual Shear Strength of Clays and Shales", Geotechnique, Vol.36, No.2, pp.269-274. https://doi.org/10.1680/geot.1986.36.2.269
  28. Mih, W. C. (1999), "High Concentration Granular Shear Flow", Journal of Hydraulic Research, Vol.37, No.2, pp.229-248. https://doi.org/10.1080/00221689909498308
  29. Nguyen, Q. D. and Boger, D. V. (1992), "Measuring the Flow Properties of Yield Stress Fluids", Annual Review of Fluid Mechanics, Vol.24, No.1, pp.47-88. https://doi.org/10.1146/annurev.fl.24.010192.000403
  30. O'Brien, J. S. and Julien, P. Y. (1988), "Laboratory Analysis of Mudflow Properties. Journal of Hydraulic Engineering", Vol.114, No.8, pp.877-887. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(877)
  31. Omar, T. and Sadrekarimi, A. (2015), "Effect of Triaxial Specimen Size on Engineering Design and Analysis", International Journal of Geo-Engineering, Vol.6, Paper No.5 (DOI 10.1186/s40703-015-0006-3).
  32. Ovarlez, G., Cohen-Addad, S., Krishan, K., Goyon, J., and Coussot, P. (2013), "On the Existence of a Simple Yield Stress Fluid behavior", Journal of Non-Newtonian Fluid Mechanics, 193, pp.68-79. https://doi.org/10.1016/j.jnnfm.2012.06.009
  33. Park, G. W., Hong, W. T., and Lee, J. S. (2017), "Estimation of Shear Strength and Rheological Parameters of Fine-Grained Soil Using Direct Shear Test", Journal of the Korean Geotechnical Society, Vol.18, No.2, pp.29-37.
  34. Ramesh, V., Mani, S., Baskar, M., Kavitha, G., and Anbazhagan, S. (2017), "Landslide Hazard Zonation Mapping and Cut Slope Stability Analyses Along Yercaud Ghat Road (Kuppanur-Yercaud) Section, Tamil Nadu, India", International Journal of Geo-Engineering, Vol.8, Paper No.2 (DOI 10.1186/s40703-017-0039-x).
  35. Shibuya, S., Mitachi, T., and Tamate, S. (1997), "Interpretation of Direct Shear Box Testing of Sands as Quasi-simple Shear", Geotechnique, Vol.47, No.4, pp.769-790. https://doi.org/10.1680/geot.1997.47.4.769
  36. Shin, H. (2014), "FEM Numerical Formulation for Debris Flow", Journal of the Korean Geotechnical Society, Vol.30, No.10, pp. 55-65. https://doi.org/10.7843/KGS.2014.30.10.55
  37. Shin, H. (2015), "Evaluation of Debris Properties Using Numerical Analysis for USGS Debris Flume Tests", Journal of Korean Society of Hazard Mitigation, Vol.15, No.3, pp.215-221. https://doi.org/10.9798/KOSHAM.2015.15.3.215
  38. Suetsugu, Y. and White, J. L. (1983), "The Influence of Particle Size and Surface Coating of Calcium Carbonate on the Rheological Properties of its Suspensions in Molten Polystyrene", Journal of Applied Polymer Science, Vol.28, No.4, pp.1481-1501. https://doi.org/10.1002/app.1983.070280421
  39. Tran, M. K., Byun, Y. H., Shin, H., and Lee J. S. (2011) "Behaviors of Soluble Granular Media during Particle Dissolution", International Journal of Geo-Engineering, Vol.3, No.2, pp.39-49.
  40. Tran, M. K., Shin, H., Byun, Y. H., and Lee, J. S. (2012), "Mineral Dissolution Effects on Mechanical Strength", Engineering Geology, 125, pp.26-34. https://doi.org/10.1016/j.enggeo.2011.10.014
  41. Vallejo, L. E. and Scovazzo, V. A. (2003), "Determination of the Shear Strength Parameters Associated with Mudflows", The Japanese Geotechnical Society, Vol.43, No.2, pp.129-133.
  42. Wang, J. and Gutierrez, M. (2010), "Discrete Element Simulations of Direct Shear Specimen Scale Effects", Geotechnique, Vol.60, No.5, pp.395-409. https://doi.org/10.1680/geot.2010.60.5.395