DOI QR코드

DOI QR Code

10kW wind turbine blade aerodynamic design and verification

10kW 풍력발전기 블레이드 형상 개념 설계 및 타당성 검증

  • Yoo, Cheol (Wind Energy Laboratory, Korea Institute of Energy Research) ;
  • Son, Eunkuk (Wind Energy Laboratory, Korea Institute of Energy Research) ;
  • Hwang, Sungmok (Wind Energy Laboratory, Korea Institute of Energy Research) ;
  • Kim, Daejin (System Convergence Laboratory, Korea Institute of Energy Research) ;
  • Kim, Seokwoo (Wind Energy Laboratory, Korea Institute of Energy Research)
  • 유철 (한국에너지기술연구원, 풍력연구실) ;
  • 손은국 (한국에너지기술연구원, 풍력연구실) ;
  • 황성목 (한국에너지기술연구원, 풍력연구실) ;
  • 김대진 (한국에너지기술연구원, 시스템융복합연구실) ;
  • 김석우 (한국에너지기술연구원, 풍력연구실)
  • Received : 2017.10.26
  • Accepted : 2017.12.04
  • Published : 2017.12.31

Abstract

A 10kw wind turbine blade aerodynamic design was carried out using the self-developed program AeroDA. The concept, basic shape, and optimization were designed and verified. A performance analysis was carried out and the key factors in each design stage are summarized. In addition, a guide for the placement of cross-section airfoils constituting the blades is presented, and the importance of the stall margin test as a method of verifying aerodynamic design is summarized. In order to verify the design program AeroDA, we compared the results of the performance analysis with a specialized program DNVGL_Bladed.

풍력 발전기 블레이드 공력 설계 프로세스를 정리하고 자체 개발한 프로그램을 이용하여 10kw 블레이드 공력 형상 설계를 진행하였다. 개념설계, 기본 형상 설계, 최적화 설계, 설계 검증 및 성능 해석순으로 진행하였으며, 각 설계 단계에서 중요한 설계 인자에 대해서 정리하였다. 또한 블레이드를 구성하는 단면 익형의 배치에 대한 가이드를 제시하였으며, 공력 설계를 검증하는 방법으로 stall margin 확인의 중요성에 대해서 정리하였다. 자체 개발한 설계 프로그램의 결과를 BEMT 기반의 전문 프로그램 DNVGL Bladed의 성능 해석 결과와 비교하여 제시하였다.

Keywords

References

  1. Wiser, R. ,Bolinger, M. , "2015 Wind Technologies Market Report, p.51-52, U.S. Department of Energy, 2015.
  2. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi. Wind energy handbook. p.39-65, Wiley, 2011.
  3. Moriarty, P. J. and Hansen, A. C., AeroDyn Theory Manual, National Renewable Energy Laboratory, 2005.
  4. K.J. Jackson, M.D. Zuteck, C.P. van Dam, K.J. Standish, D. Berry, Innovative design approaches for large wind turbine blades, Wind Energy volume 8, p.141-171. John Wiley & Sons, 2005. https://doi.org/10.1002/we.128
  5. Miley, S.J. A Catalog of Low Reynolds Number Airfoil Data for Wind Turbine Applications. College Station, TX: Texas A&M University, 1982.
  6. W.A. Timmer, R.P.J.O.M. van Rooij, Summary of the Delft University Wind Turbine Dedicated Airfoil, AIAA-2003-0352 Jan-2003, Reno, USA
  7. Bertagnolio F., Sorensen N., Johansen J., Fuglsang P., Wind Turbine Airfoil Catalogue, Riso-R-1280, 2001
  8. W. A. Timer, "An overview of NACA 6-digit airfoil series characteristics with reference to airfoils for large wind turbine blades," AIAA Paper No. 2009-268, 2009
  9. Jonkman, J., Butterfield, S., Musial, W., and Scott, G., Definition of 5-MW Reference Wind Turbine for Offshore System Development, NREL/TP-500-38060, 2009.
  10. Resor, B. R., "Definition of a 5MW/61.5m Wind Turbine Blade Reference Model," Sandia National Laboratories: SAND2013-2569, 2013.