Anti-oxidative Effect of Epimedii Herba in Caenorhabditis elegans

음양곽의 예쁜꼬마선충 내의 항산화 효과

  • Received : 2017.11.29
  • Accepted : 2017.12.12
  • Published : 2017.12.29

Abstract

To know the anti-oxidative effect of Epimedii Herba (Berberidaceae), the methanol extract of this plant was investigated by using a Caenorhabditis elegans model system. The methanol extract of this plant showed relatively significant DPPH radical scavenging and superoxide quenching activities. The ethyl acetate soluble fraction of Epimedii Herba (EHE), which showed the most potent DPPH radical scavenging and superoxide quenching activities, was tested on its effects on superoxide dismutase (SOD), catalase, intracellular ROS, and oxidative stress tolerance in Caenorhabditis elegans. Furthermore, in order to verify that regulation of stress-response genes is responsible for the increased stress tolerance of the EHE treated C. elegans, we checked SOD-3 expression using a transgenic strain. As a result, the EHE increased SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Besides, EHE-treated CF1553 worms showed higher SOD-3::GFP intensity than that of non-treated controls.

Keywords

References

  1. Harman, D. (1992) Free radical theory of aging: history. EXS. 62: 1-10.
  2. de Paulet, A. C. (1990) Free radicals and aging. Ann. Biol. Clin. (Paris) 48: 323-330.
  3. Ashok, B. T. and Ali, R. (1999) The aging paradox: free radical theory of aging. Exp. Gerontol. 34: 293-303. https://doi.org/10.1016/S0531-5565(99)00005-4
  4. Cedikova, M., Pitule, P., Kripnerova, M., Markova, M. and Kuncova, J. (2016) Multiple roles of mitochondria in aging processes. Physiol. Res. 65(Supplementum 5): S519-S531.
  5. den Endea, W. V., Pesheva, D. and Garab, L. D. (2011) Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends in Food Sci. Technol. 22: 689-697. https://doi.org/10.1016/j.tifs.2011.07.005
  6. Niki, E., Yamamoto, Y., Komuro, E. and Sato, K. (1991) Membrane damage due to lipid oxidation. Am. J. Clin. Nutr. 53: 201S-205S. https://doi.org/10.1093/ajcn/53.1.201S
  7. Sarkar, D. and Fisher, P. B. (2006) Molecular mechanisms of aging-associated inflammation. Cancer Lett. 236: 13-23. https://doi.org/10.1016/j.canlet.2005.04.009
  8. Sohal, R. S., Agarwal, A., Agarwal, S. and Orr, W. C. (1995) Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J. Biol. Chem. 270: 15671-15674. https://doi.org/10.1074/jbc.270.26.15671
  9. Scandalios, J. G. (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 38: 995-1014. https://doi.org/10.1590/S0100-879X2005000700003
  10. Branen, A. L. (1975) Toxicological and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52: 59-63. https://doi.org/10.1007/BF02901825
  11. Hong, M.-J., Lee, B.-C., Ahn, Y.-M. and Ahn, S.-Y. (2011) The effects of Epimedii Herba on a hypothyroidism rat model induced by PTU(6-Propyl-2-thiouracil). Journal of Pharmacopuncture 14: 13-22. https://doi.org/10.3831/KPI.2011.14.4.013
  12. Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921. https://doi.org/10.1248/cpb.37.1919
  13. Thuong, P. T., Kang, H. J., Na, M., Jin, W., Youn, U. J., Seong, Y. H., Song, K. S., Min, B. S. and Bae, K. (2007) Antioxidant constituents from Sedum takesimense. Phytochemistry 68: 2432-2438. https://doi.org/10.1016/j.phytochem.2007.05.031
  14. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
  15. Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabditis elegans. J. Med. Chem. 55: 4169-4177. https://doi.org/10.1021/jm2014315
  16. Aebi, H. (1984) Catalase in vitro. Method. Enzymol. 105: 121-126.
  17. Kim, H. N., Seo, H. W., Kim, B. S., Lim H. J., Lee, H, N., Park, J. S., Yoon, Y. J., Oh, J. W., Oh, M. J., Kwon, J., Oh, C. H., Cha, D. S. and Jeon, H. (2015) Lindera obtusiloba extends lifespan of Caenorhabditis elegans. Nat. Prod. Sci. 21: 128-133.
  18. Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
  19. Su, X. D., Li, W., Ma, J. Y. and Kim, Y. H. (2017) Chemical constituents from Epimedium koreanum Nakai and their chemotaxonomic significance. Nat. Prod. Res. doi.org/10.1080/14786419.2017.1405412.
  20. Han, F. and Lee, I. S. (2017) A new flavonol glycoside from the aerial parts of Epimedium koreanum Nakai. Nat. Prod. Res. doi: 10.1080/14786419.2016.1239092.
  21. Zhang, W., Chen, H., Wang, Z., Lan, G. and Zhang, L. (2013) Comparative studies on antioxidant activities of extracts and fractions from the leaves and stem of Epimedium koreanum Nakai. J. Food Sci. Technol. 50: 1122-1129. https://doi.org/10.1007/s13197-011-0447-4
  22. Liu, L., Zuo, Z., Lu, S., Liu, A. and Liu, X. (2017) Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-${\kappa}B$ activation in vivo and in vitro. Iran J. Basic Med. Sci. 20: 813-821.
  23. Farías, J. G., Molina, V. M., Carrasco, R. A., Zepeda, A. B., Figueroa, E., Letelier, P. and Castillo, R. L. (2017) Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients doi: 10.3390/nu9090966.
  24. Wang, T., Zhang, J. C., Chen, Y., Huang, F., Yang, M. S.and Xia, O. P. G. (2007) Comparison of antioxidative and antitumor activities of six flavonoids from Epimedium koreanum. Zhongguo Zhong Yao Za Zhi. 32: 715-718.
  25. Li, H. F., Guan, X. Y., Yang, W. Z., Liu, K. D., Ye, M., Sun, C., Lu, S. and Guo, D. A. (2012) Antioxidant flavonoids from Epimedium wushanense. Fitoterapia 83: 44-48. https://doi.org/10.1016/j.fitote.2011.09.010