참고문헌
- Assuncao, M.D., Calheiros, R.N., Bianchi, S., Netto, M.A., and Buyya, R., Big Data computing and clouds : Trends and future directions, Journal of Parallel and Distributed Computing, 2015, Vol. 79, pp. 3-15.
- Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A.Y., Foufou, S., and Bouras, A., A survey of clustering algorithms for big data : Taxonomy and empirical analysis, IEEE transactions on emerging topics in computing, 2014, Vol. 2, No. 3, pp. 267-279. https://doi.org/10.1109/TETC.2014.2330519
- Gungor, Z. and Unler, A., K-harmonic means data clustering with simulated annealing heuristic, Applied Mathematics and Computation, 2007, Vol. 184, No. 2, pp. 199-209. https://doi.org/10.1016/j.amc.2006.05.166
- Hruschka, E.R., Campello, R.J., and Freitas, A.A., A survey of evolutionary algorithms for clustering, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2009, Vol. 39, No. 2, pp. 133-155. https://doi.org/10.1109/TSMCC.2008.2007252
- Jeon, S.Y., Lee, D.H., and Bae, M.J., A study on the Application Method of Munition's Quality Information based on Big Data, Journal of the Korea Academia- Industrial cooperation Society, 2016, Vol. 17, No. 6, pp. 315-325. https://doi.org/10.5762/KAIS.2016.17.6.315
- Karaboga, D. and Ozturk, C., A novel clustering approach : Artificial Bee Colony (ABC) algorithm, Applied soft computing, 2011, Vol. 11, No. 1, pp. 652-657. https://doi.org/10.1016/j.asoc.2009.12.025
- Kao, Y.T., Zahara, E., and Kao, I.W., A hybridized approach to data clustering, Expert Systems with Applications, 2008, Vol. 34, No. 3, pp. 1754-1762. https://doi.org/10.1016/j.eswa.2007.01.028
- Kim, S.S., Baek, J.Y., and Kang, B.S., Hybrid Simulated Annealing for Data Clustering, Journal of Society of Korea Industrial and Systems Engineering, 2017, Vol. 40, No. 2, pp. 92-98. https://doi.org/10.11627/jkise.2017.40.2.092
- Kim, S.S. and Byeon, J.H., Cell Grouping Design for Wireless Network using Artificial Bee Colony, Journal of Society of Korea Industrial and Systems Engineering, 2016, Vol. 39, No. 2, pp. 46-53. https://doi.org/10.11627/jkise.2016.39.2.046
- Krishna, K. and Murty, M.N., Genetic K-means algorithm, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999, Vol. 29, No. 3, pp. 433-439. https://doi.org/10.1109/3477.764879
- Kumar, Y. and Sahoo, G., A two-step artificial bee colony algorithm for clustering, Neural Computing and Applications, 2017, Vol. 28, No. 3, pp. 537-551. https://doi.org/10.1007/s00521-015-2095-5
- Maulik, U. and Bandyopadhyay, S., Genetic algorithmbased clustering technique, Pattern recognition, 2000, Vol. 33, Issue. 9, pp. 1455-1465. https://doi.org/10.1016/S0031-3203(99)00137-5
- Perim, G., Wandekokem, E., and Varejao, F., K-Means Initialization Methods for Improving Clustering by Simulated Annealing, 11th Ibero-American Conference on AI, 2008, Lisbon, Vol. 5290, pp. 133-142.
- Reisi, M., Moradi, P., and Abdollahpouri, A., A feature weighting based artificial bee colony algorithm for data clustering, In Information and Knowledge Technology (IKT), 2016 Eighth International Conference on, 2016, Hamedan, Iran, pp. 134-138.
- Selim, S.Z. and Alsultan, K., A simulated annealing algorithm for the clustering problem, Pattern recognition, 1991, Vol. 24, No. 10, pp. 1003-1008. https://doi.org/10.1016/0031-3203(91)90097-O
- Singh, S.S. and Chauhan, N.C., K-means v/s K-medoids: A Comparative Study, National Conference on Recent Trends in Engineering & Technology, 2011, Vol. 13.
- Sithara, E.P. and Nazeer, K.A.A, A Hybrid K Harmonic Means with ABC Clustering Algorithm using an Optimal K value for High Performance Clustering, International Journal on Cybernetics & Informatics, 2016, Vol. 5, No. 2.
- Sun, L.X., Xu, F., Liang, Y.Z., Xie, Y.L., and Yu, R.Q., Cluster analysis by the K-means algorithm and simulated annealing, Chemometrics and intelligent laboratory systems, 1994, Vol. 25, No. 1, pp. 51-60. https://doi.org/10.1016/0169-7439(94)00049-2
- Tran, D.C., Wu, Z., Wang, Z., and Deng, C., A Novel Hybrid Data Clustering Algorithm Based on Artificial Bee Colony Algorithm and K-Mean, Chinese Journal of Electronics, 2015, Vol. 24, No. 4, pp. 694-701. https://doi.org/10.1049/cje.2015.10.006
- UCI machine learning repository Cloud datasets, https://archive.ics.uci.edu/ml/datasets/cloud.
- UCI machine learning repository Glass datasets, https://archive.ics.uci.edu/ml/datasets/glass.
- UCI machine learning repository Iris datasets, https://archive.ics.uci.edu/ml/datasets/iris.
- UCI machine learning repository Vowel datasets, https://archive.ics.uci.edu/ml/datasets/vowel.
- UCI machine learning repository Wine datasets, https://archive.ics.uci.edu/ml/datasets/wine.
- Van der Merwe, D.W. and Engelbrecht, A.P., Data clustering using particle swarm optimization, In Evolutionary Computation, 2003, CEC'03. The 2003 Congress on, IEEE, 2003, Vol. 1, pp. 215-220.
- Xu, R., Xu, J., and Wunsch, D.C., A comparison study of validity indices on swarm-intelligence-based clustering, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, Vol. 42, No. 4, pp. 1243-1256. https://doi.org/10.1109/TSMCB.2012.2188509
- Yan, X., Zhu, Y., Zou, W., and Wang, L., A new approach for data clustering using hybrid artificial bee colony algorithm, Neurocomputing, 2012, Vol. 97, pp. 241-250. https://doi.org/10.1016/j.neucom.2012.04.025
- Zhang, C., Ouyang, D., and Ning, J., An artificial bee colony approach for clustering, Expert Systems with Applications, 2010, Vol. 37, No. 7, pp. 4761-4767. https://doi.org/10.1016/j.eswa.2009.11.003
피인용 문헌
- 빠른 클러스터 개수 선정을 통한 효율적인 데이터 클러스터링 방법 vol.41, pp.2, 2017, https://doi.org/10.11627/jkise.2018.41.2.001
- 가우시안 기반 Hyper-Rectangle 생성을 이용한 효율적 단일 분류기 vol.41, pp.2, 2017, https://doi.org/10.11627/jkise.2018.41.2.056