DOI QR코드

DOI QR Code

An Adaptive Speed Estimation Method Based on a Strong Tracking Extended Kalman Filter with a Least-Square Algorithm for Induction Motors

  • Yin, Zhonggang (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Li, Guoyin (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Du, Chao (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Sun, Xiangdong (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Liu, Jing (Department of Electrical Engineering, Xi'an University of Technology) ;
  • Zhong, Yanru (Department of Electrical Engineering, Xi'an University of Technology)
  • 투고 : 2016.05.06
  • 심사 : 2016.09.12
  • 발행 : 2017.01.20

초록

To improve the performance of sensorless induction motor (IM) drives, an adaptive speed estimation method based on a strong tracking extended Kalman filter with a least-square algorithm (LS-STEKF) for induction motors is proposed in this paper. With this method, a fading factor is introduced into the covariance matrix of the predicted state, which forces the innovation sequence orthogonal to each other and tunes the gain matrix online. In addition, the estimation error is adjusted adaptively and the mutational state is tracked fast. Simultaneously, the fading factor can be continuously self-tuned with the least-square algorithm according to the innovation sequence. The application of the least-square algorithm guarantees that the information in the innovation sequence is extracted as much as possible and as quickly as possible. Therefore, the proposed method improves the model adaptability in terms of actual systems and environmental variations, and reduces the speed estimation error. The correctness and the effectiveness of the proposed method are verified by experimental results.

키워드

참고문헌

  1. C. Caruana, G. M. Asher, and M. Sumner, "Performance of HF signal injection techniques for zero-low-frequency vector control of induction machines under sensorless conditions," IEEE Trans. Ind. Electron., Vol. 53, No. 1, pp. 225-238, Feb. 2006. https://doi.org/10.1109/TIE.2005.862257
  2. L. Y. Xu, E. Inoa, Y. Liu, and B. Guan, "A new high-frequency injection method for sensorless control of doubly fed induction machines," IEEE Trans. Ind. Appl., Vol. 48, No. 5, pp. 1556-1564, Sep/Oct. 2012. https://doi.org/10.1109/TIA.2012.2210015
  3. A. Accetta, M. Cirrincione, M. Pucci, and G. Vitale, "Closed-loop MRAS speed observer for linear inductionmotor drives," IEEE Trans. Ind. Appl., Vol.51, No.3, pp. 2279-2290, May/Jun. 2015. https://doi.org/10.1109/TIA.2014.2375377
  4. T. Orlowska-Kowalska and M. Dybkowski, "A new formulation of reactive-power-based model reference adaptive system for sensorless induction motor drive," IEEE Trans. Ind. Electron., Vol. 62, No. 11, pp. 6797-6807, Nov. 2015. https://doi.org/10.1109/TIE.2015.2432105
  5. M. S. Zaky, "Stability analysis of speed and stator resistance estimators for sensorless induction motor drives," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 858-870, Feb. 2012. https://doi.org/10.1109/TIE.2011.2161658
  6. W. Sun, Y. Yu, G. L. Wang, B. B. L, and D. G. Xu "Design method of adaptive full order observer with or without estimated flux error in speed estimation algorithm," IEEE Trans. Power. Electron., Vol. 31, No. 3, pp. 2609-2626, Mar. 2016. https://doi.org/10.1109/TPEL.2015.2440373
  7. S. Po-ngam and S. Sangwongwanich, "Stability and dynamic performance improvement of adaptive full-order observers for sensorless PMSM drive," IEEE Trans. Power Electron., Vol. 27, No. 2, pp. 588-600, Feb. 2012. https://doi.org/10.1109/TPEL.2011.2153212
  8. R. P. Vieira, C. C. Gastaldini, R. Z. Azzolin, and H. A. Grundling, "Sensorless sliding-mode rotor speed observer of induction machines based on magnetizing current estimation," IEEE Trans. Ind. Electron., Vol. 61, No. 9, pp. 4573-4582, Sep. 2014. https://doi.org/10.1109/TIE.2013.2290759
  9. L. H. Zhao, J. Huang, B. N. Li, and W. B. Kong, "Second-order sliding-mode observer with online parameter identification for sensorless induction motodrives," IEEE Trans. Ind. Electron., Vol. 61, No. 10, pp. 5280-5289, Oct. 2014. https://doi.org/10.1109/TIE.2014.2301730
  10. X. D. Sun, L. Chen, Z. B. Yang, and H. Q. Zhu, "Speed-sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer." IEEE Trans. on Mechatron., Vol. 18, No. 4, pp. 1357-1366, Aug. 2013. https://doi.org/10.1109/TMECH.2012.2202123
  11. I. M. Alsofyani and N. R. N. Idris, "Simple flux regulation for improving state estimation at very low and zero speed of a speed sensorless direct torque control of an induction motor," IEEE Trans. Power. Electron., Vol. 31, No. 4, pp. 3027-3035, Apr. 2016. https://doi.org/10.1109/TPEL.2015.2447731
  12. R. N. Andriamalala, H. Razik, J. N. Razafinjaka, L. Baghli, and F. Sargos,"Independent and direct rotor-flux oriented control of series-connected induction machines Using Decoupled Kalman-Filters," in Proc. 37th Annual IEEE Conf. Ind. Electron. Soc., Melbourne, Australia, 2011, pp. 3488-3494.
  13. Y. C. Shi, K. Sun, L. P. Huang, and Y. D. Li, "Online identification of permanent magnet fluxbased on extended Kalman filter for IPMSM drive with position sensorless control," IEEE Trans. Ind. Electron., Vol. 59, No. 11, pp. 4169-4178, Nov. 2012. https://doi.org/10.1109/TIE.2011.2168792
  14. L. Idkhajine, E. Monmasson, and A. Maalouf, "Fully FPGA-based sensorless control for synchronous AC drive using an extended Kalman filter," IEEE Trans. Ind. Electron., Vol. 59, No. 10, pp. 3908-3918, Oct. 2012. https://doi.org/10.1109/TIE.2012.2189533
  15. A. Masi, M. Butcher, M. Martinoand, and R. Picatoste, "An application of the extended Kalman filter for a sensorless stepper motor drive working with long cables," IEEE Trans. Ind. Electron., Vol. 59, No. 11, pp. 4217-4225, Nov. 2012. https://doi.org/10.1109/TIE.2011.2178213
  16. M. Bendjedia, Y. Ait-Amirat, B. Walther, and A. Berthon, "Position control of a sensorless stepper motor," IEEE Trans. Power Electron., Vol. 27, No. 2, pp. 578-587, Feb. 2012. https://doi.org/10.1109/TPEL.2011.2161774
  17. Z. G. Yin, C. Zhao, J. Liu, and Y. R. Zhong, "Research on anti-error performance of speed and flux estimator for induction motor using robust reduced-order EKF," IEEE Trans. Ind. Informatics., Vol. 9, No. 2, pp. 1037-1046, May. 2013. https://doi.org/10.1109/TII.2012.2222422
  18. N. K. Quang, N. T. Hieu, and Q. P. Ha, "FPGA-based sensorless PMSM speed control using reduced-order extended Kalman filters," IEEE Trans. Ind. Electron., Vol. 61, No. 2, pp. 6574-6582, Dec. 2014. https://doi.org/10.1109/TIE.2014.2320215
  19. M. Habibullah and D. D. C. Lu, "A speed-sensorless FS-PTC of induction motors using extended Kalman filters," IEEE Trans. Ind. Electron., Vol. 62, No. 11, pp. 6765-6778, Nov. 2015. https://doi.org/10.1109/TIE.2015.2442525
  20. N. Salvatore, A. Caponio, F. Neri, S. Stasi, and G. L. Cascella, "Optimization of delayed-state kalman-filterbased optimization of delayed-state Kalman-filter-based control of induction motors," IEEE Trans. Ind. Electron., Vol. 57, No. 1, pp. 385-394, Jan. 2010. https://doi.org/10.1109/TIE.2009.2033489
  21. T. Schuhmann and W. Hofmann, "Improving operational performance of active magnetic bearings using Kalman filter and state feedback control," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 821-829, Feb. 2012. https://doi.org/10.1109/TIE.2011.2161056
  22. M. Barut, R. Demir, E. Zerdali, and R. Inan, "Real-time implementation of bi input-extended Kalman filter-based estimator for speed-sensorless control of induction motors," IEEE Trans. Ind. Electron., Vol. 59, No. 11, pp. 4197-4206, Nov. 2012. https://doi.org/10.1109/TIE.2011.2178209
  23. X. Xiao and C. Chen, "Dynamic permanent magnet flux estimation of permanent magnet synchronous machines," IEEE Trans. Appl. Supercond.,Vol. 20, No. 3, pp. 1085-1088, Jun. 2010. https://doi.org/10.1109/TASC.2010.2041435
  24. Z. G. Yin, C. Zhao, Y. R. Zhong, and J. Liu, "Research on robust performance of speed-sensorless vector control for the induction motor using an interfacing multiple-model extended Kalman filter," IEEE Trans. Power. Electron., Vol. 29, No. 6, pp. 3011-3019, Jun. 2014. https://doi.org/10.1109/TPEL.2013.2272091
  25. F. Alonge, T. Cangemi, F. D'Ippolito, A. Fagiolini, and A. Sferlazza, "Robustness analysis of an extended Kalman filter for sensorless control of induction motors," IEEE Trans. Ind. Electron., Vol. 62, No. 4, pp. 2341-2352, Apr. 2015. https://doi.org/10.1109/TIE.2014.2355133
  26. K. Szabat, T. Orlowska-Kowalska, and M. Dybkowski, "Indirect adaptive control of induction motor drive system with an elastic coupling," IEEE Trans. Ind. Electron., Vol. 56, No. 10, pp. 4038-4042, Oct. 2009. https://doi.org/10.1109/TIE.2009.2022514
  27. M. Hilairet, F. Auger, and E. Berthelot, "Speed and rotor flux estimation of induction machines using a two-stage extended Kalman filter," Automatica, Vol. 45, No. 8, pp. 1819-1827, Aug. 2009. https://doi.org/10.1016/j.automatica.2009.04.005
  28. V. Smidl and Z. Peroutka, "Advantages of square-root extended Kalman filter for sensorless control of AC drives," IEEE Trans. Ind. Electron., Vol. 59, No. 11, pp. 4189-4196, Nov. 2012. https://doi.org/10.1109/TIE.2011.2180273
  29. G. H. B. Foo, X. A Zhang, and D. M. Vilathgamuwa, "A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter," IEEE Trans. Ind. Electron., Vol. 60, No. 8, pp. 3485-3495, Aug. 2013. https://doi.org/10.1109/TIE.2013.2244537