DOI QR코드

DOI QR Code

Variability of Satellite-derived Chlorophyll-a Concentration in Relation to Indian Ocean Dipole (IOD) Variation

인도양 쌍극진동 변동에 따른 위성에서 추정된 표층 클로로필-a 농도 변화 연구

  • Son, Young Baek (Jeju Environment Research Section, Korea Institute of Ocean Science & Technology (KIOST)) ;
  • Kim, Suk Hyun (Marine Environmental Analyses.Remediation Division, Korea Institute of Ocean Science & Technology (KIOST)) ;
  • Kim, Sang-Hyun (Mechanical System Engineering, College of Engineering, Hansung University) ;
  • Rho, TaeKeun (Marine Environmental Analyses.Remediation Division, Korea Institute of Ocean Science & Technology (KIOST))
  • 손영백 (한국해양과학기술원(KIOST) 제주특성연구실) ;
  • 김석현 (한국해양과학기술원(KIOST) 환경기반연구센터) ;
  • 김상현 (한성대학교 공과대학 기계시스템공학과) ;
  • 노태근 (한국해양과학기술원(KIOST) 환경기반연구센터)
  • Received : 2017.09.18
  • Accepted : 2017.11.10
  • Published : 2017.12.31

Abstract

To understand the temporal and spatial variations of surface chlorophyll-a concentration (Chl-a) distribution in the Indian Ocean ($30^{\circ}E{\sim}120^{\circ}E$, $30^{\circ}S{\sim}30^{\circ}N$) by the Indian Ocean Dipole (IOD), we conducted EOF and K means analyses of monthly satellite-derived Chl-a data in the region during 1998~2016 periods. Chl-a showed low values in the central region of the Indian Ocean and relatively high values in the upwelling region and around the marginal regions of the Indian Ocean. It also had a strong seasonal variation of Chl-a, showing the lowest value in the spring and the highest value in summer due to the change of the monsoon and current system. The EOF analysis showed that Chl-a variation in EOF mode 1 is related to ENSO (El $Ni{\tilde{n}}o$/Southern Oscillation) and that of mode 2 is linked to IOD. Both modes explained spatially opposite trends of Chl-a in the east and west Indian Ocean. From K means analysis, the Chl-a variation in the east and west Indian Ocean, and around India have relatively good relationship with IOD while that in the tropical and middle Indian Ocean closely associated with ENSO. The spatial and temporal distribution of Chl-a also showed distinct spatial and temporal variations depend on the different types of IOD events. IOD classifies two patterns, which occurred during the developing ENSO (First Type IOD) and the year following ENSO event (Second Type IOD). Chl-a variation in the First Type IOD started in summer and peaked in fall around the east and west Indian Ocean. Chl-a variation in the Second Type IOD occurred started in spring, peaked in summer and fall, and disappeared in winter. In the Chl-a variation related to IOD, developing process appearing in the Chl-a difference between the east and west Indian ocean was similar. Chl-a variation in the northern Indian Ocean were opposite trend with changing developing phase of IOD.

본 연구는 2017년부터 "이사부호"를 활용하여 인도양에서 본격적으로 수행되는 관측에 앞서 위성을 활용하여 인도양 쌍극진동(Indian Ocean Dipole, IOD) 변동에 따른 위성에서 추정된 클로로필-a 농도의 시/공간적 변화를 이해하는데 목적이 있다. 특히 단기적인 변화보다는 장기 변화에 초점을 두고 1998년부터 2016년까지 해색위성에서 계산된 월평균 클로로필-a 농도 자료를 이용하여 인도양 전 해역($30^{\circ}E{\sim}120^{\circ}E$, $30^{\circ}S{\sim}30^{\circ}N$)을 대상으로 분석했다. 클로로필-a 농도는 중앙 인도양에서 낮고, 용승해역 및 대륙 주변 해역에서 증가되었다. 계절풍과 해류 시스템의 영향으로 클로로필-a 농도는 봄에 가장 감소하고 여름에 최대를 나타냈다. Empirical Orthogonal Function(EOF) 분석 결과, 첫 번째 모드의 클로로필-a 농도 변화는 엔소(El $Ni{\tilde{n}}o$/Southern Oscillation, ENSO)의 변화와 높은 관계를 보이고, 두 번째 모드의 클로로필-a 농도 변화는 엔소에 의한 영향보다는 인도양 쌍극진동의 변화와 상대적으로 높은 관계를 나타냈다. 클로로필-a 농도는 두 개의 모드에서 공통적으로 동 인도양과 서 인도양에서 서로 상반된 변화를 나타냈다. 클로로필-a 농도 변화는 동 인도양, 서 인도양 및 인도 주변 해역에서는 인도양 쌍극진동과 밀접한 관계를 보이고, 열대 중앙 인도양 중에서는 상대적으로 엔소의 변화와 높은 관계를 나타냈다. 그러나 클로로필-a 농도의 시/공간적 변화는 인도양 쌍극진동의 발생 기작에 따라 다른 반응을 나타냈다. 클로로필-a 농도 변화는 첫 번째 타입 인도양 쌍극진동(엔소 발생시기와 동일)은 여름철에 동 인도양과 서 인도양에서 클로로필-a 농도 차이가 생기고, 최대는 가을에 발생했다. 두 번째 타입 인도양 쌍극진동(엔소 발생 후 그 다음 해 또는 소멸되는 시기)은 봄에 동 인도양과 서 인도양 클로로필-a 농도 차이가 생기고, 여름과 가을에 증가되어, 겨울에 감소되었다. 인도양 쌍극진동의 변동에 따른 클로로필-a 농도 변화는 동 인도양과 서 인도양의 클로로필-a 농도 차이를 발생시키는 과정은 유사하지만, 북부 인도양은 쌍극진동 발생 기작에 따라 상반된 클로로필-a 농도 변화를 나타냈다.

Keywords

References

  1. Abram, N.J., M.K. Gagan, J. Cole, W.S. Hantoro, and M. Mudelsee, 2008. Recent intensification of tropical climate variability in the Indian Ocean, Nature Geoscience, 1: 849-853. https://doi.org/10.1038/ngeo357
  2. Cai, W. and T. Cowan, 2013. Why is the amplitude of the Indian Ocean dipole overly large in CMIP3 and CMIP5 climate models, Geophysical Research Letter, 40: 1200-1205. https://doi.org/10.1002/grl.50208
  3. Cai, W., A. Santoso, G. Wang, E. Weller, L. Wu, K. Ashok, Y. Masumoto, and T. Yamagata, 2014. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming, Nature, 510: 254-258. https://doi.org/10.1038/nature13327
  4. Chowdary, J.S., S.-P. Xie, H. Tokinage, Y.M. Okumura, H. Kubota, N. Johnson, and X.-T. Zheng, 2012. Interdecadal variations in ENSO teleconnection to the Indo-western Pacific for 1870-2007, Journal of Climate, 25: 1722-1744. https://doi.org/10.1175/JCLI-D-11-00070.1
  5. Compo, G.P. and R.D. Sardeshmukh, 2010. Removing ENSO-related variations from the climate record, Journal of Climate, 23: 1957-1978. https://doi.org/10.1175/2009JCLI2735.1
  6. Currie, J.C., M. Lengaigne, J. Vialard, D.M. Kaplan, O. Aumont, S.W.A. Naqvi, and O. Maury, 2013. Indian Ocean Dipole and El Nino/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean, Biogeoscience, 10: 6677-6698. https://doi.org/10.5194/bg-10-6677-2013
  7. Guo, F., Q. Liu, S. Sun, and J. Yang, 2015. Three types of Indian Ocean Dipoles, Journal of Climate, 28(8): 3073-3092. https://doi.org/10.1175/JCLI-D-14-00507.1
  8. Han, W., J. Vialard, M.J. PcPhaden, T. Lee, Y. Masumoto, M. Feng, and P.M. Ruijter, 2014. Indian Ocean decadal variability: A Review, Bulletin of American Meteorology Society, 95:1679-1703. https://doi.org/10.1175/BAMS-D-13-00028.1
  9. Hermes, J.C. and C.J.C. Reason, 2008. Annual cycle of the south Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model, Journal of Geophysical Research, 113(C4).
  10. Ihara, C., Y. Kushnir, and M.A. Cane, 2008. Warming trend of the Indian Ocean SST and Indian Ocean dipole from 1880 to 2004, Journal of Climate, 21: 2035-2046. https://doi.org/10.1175/2007JCLI1945.1
  11. IOCCG, 2004. Guide to the Creation and Use of Ocean-Color, Level-3, Binned Data product, Antonie, D.(ed.), Reports of the International Ocean-Colour Coordinating Group, No.4, IOCCG, Dartmouth, Canada.
  12. IOCCG, 2007. Ocean-Colour Data Merging. Gregg, W. (ed.), Reports of the International Ocean-Colour Coordinating Group, No.4, IOCCG, Dartmouth, Canada.
  13. Krishnamurthy, V. and B.N. Goswami, 2000. Indian monsoon-ENSO relationship on interdecadal timescale, Journal of Climate, 13: 579-595. https://doi.org/10.1175/1520-0442(2000)013<0579:IMEROI>2.0.CO;2
  14. Liu, L., L. Feng, W. Yu, H. Wang, Y. Liu, and S. Sun, 2013. The distribution and variability of simulated chlorophyll concentration over the tropical Indian Ocean from five CMIP5 model, Ocean and Coastal Sea Research, 12(2): 253-259.
  15. MacKay, D. 2003. Information Theory, Inference and Learning Algorithms, Cambridge University Press.
  16. Meehl, G.A. and J.M. Arblaster, 2011. Decadal variability of Asian-Australian monsoon-ENSOTBO relationships, Journal of Climate, 24: 4925-4940. https://doi.org/10.1175/2011JCLI4015.1
  17. Meyers, G., P. Mclntosh, L. Pigot, and M. Pook, 2007. The years of El Nino, La Nina, and interactions with the tropical Indian Ocean, Journal of Climate, 20: 2872-2880. https://doi.org/10.1175/JCLI4152.1
  18. Murtugudde, R., L. Wang, E. Hackert, J. Beauchamp, J. Christian, and A.J. Busalacchi, 2004. Remote sensing of the Indo-Pacific region: ocean color, sea level, winds and sea surface temperatures, International Journal of Remote Sensing, 25: 1423-1435. https://doi.org/10.1080/01431160310001592391
  19. Saji, N.H., B.N. Goswami, P.N. Vinayachandran, and T. Yamagata, 1999. A dipole mode in tropical Indian Ocean, Nature, 401:360-363.
  20. Schoot, F.A. and J.P. McCreary, 2001. The monsoon circulation of the Indian Ocean, Progressive Oceanography, 51: 1-123. https://doi.org/10.1016/S0079-6611(01)00083-0
  21. Son, Y.B. and W.D. Gardner, 2011. Climatological variability of surface particulate organic carbon (POC) and physical processes based on ocean color data in the Gulf of Mexico, Korea Journal of Remote Sensing, 27(3): 235-258 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2011.27.3.235
  22. Wiggert, J.D., R.G. Murtugudde, and J.R. Christian, 2006. Annual ecosystem variability in the tropical Indian Ocean: Results of a coupled biophysical ocean general circulation model, Deep-Sea Research II, 53: 644-676. https://doi.org/10.1016/j.dsr2.2006.01.027
  23. Vantrepotte, V. and F. Melin, 2011. Inter-annual variations in the SeaWiFS global chlorophyll a concentration (1997-2007), Deep-Sea Research I, 58: 429-441. https://doi.org/10.1016/j.dsr.2011.02.003
  24. Vinueza, L.R., G.M. Branch, M. Branch, and R.H. Bustamante, 2006. Top-down herbviory and bottom-up En Niño effects on Galapagos rockhshore communities, Ecological Monographs, 69: 239-266.
  25. Yamagata, T., S.K. Behera, J.J. Luo, S. Masson, M.R. Jury, and S.A. Rao, 2004. Coupled oceanatmosphere variability in the tropical Indian Ocean, Earth's Climate, 147: 189-211.
  26. Yoder, J.A. and M.A. Kennelly, 2003. Seasonal and ENSO variability in global ocean phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements, Global Biogeochemical Cycle, 17: 1112.
  27. Yokoi, T., T. Tozuka, and T. Yamagata, 2008. Seasonal variation of the Seychelles Dome, Journal of Climate, 21: 3740-3754. https://doi.org/10.1175/2008JCLI1957.1
  28. Yokoi, T., T. Tozuka, and T. Yamagata, 2009. Seasonal variations of the Seychelles Dome simulated in the CMIP3 models, Journal of Physical Oceanography, 39: 449-457. https://doi.org/10.1175/2008JPO3914.1