DOI QR코드

DOI QR Code

들깨 종자 활력 수준별 초저온 동결보존 후 발아율 및 Ascorbate Peroxidase 활성 변화

Response of Germination Rate and Ascorbate Peroxidase Activity to Cryopreservation of Perilla (Perilla frutescens) Seeds with Variable Initial Viabilities

  • 이영이 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • 이명희 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 이정윤 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • 이태윤 (서울시립대학교 자연과학대학 환경원예학과) ;
  • 손은호 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • 박홍재 (농촌진흥청 국립농업과학원 농업유전자원센터)
  • Lee, Young-yi (National Agrobiodiveristy Center, National Institute of Agricultural Science, Rural Development Administration) ;
  • Lee, Myeong-hee (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Yi, Jung-yoon (National Agrobiodiveristy Center, National Institute of Agricultural Science, Rural Development Administration) ;
  • Lee, Tae-yoon (Department of Environmental Horticulture, College of Natural Science, University of Seoul) ;
  • Son, Eun-ho (National Agrobiodiveristy Center, National Institute of Agricultural Science, Rural Development Administration) ;
  • Park, Hong-jae (National Agrobiodiveristy Center, National Institute of Agricultural Science, Rural Development Administration)
  • 투고 : 2017.11.16
  • 심사 : 2017.12.13
  • 발행 : 2017.12.31

초록

식물 종자를 비롯한 각종 유전자원을 액체질소에 저장하면 유전형질 특성의 손실 없이 장기간 보존할 수 있다. 본 연구에서 보존조건이 까다로워 단명 종자로 분류되는 들깨 종자를 초저온 동결저장 방법으로 보존할 수 있는지를 조사하였다. 수집한 들깨 품종별 종자의 초기 발아율은 40-95% 수준으로 다양하였는데, 수분함량을 3-8%로 조절한 종자를 액체질소에 처리하여도 발아율은 감소하지 않았다. 종자의 수분함량이 4-5%인 종자의 초저온 처리 후 발아율이 가장 높았으며, 초기 발아율이 낮은 품종에서는 초저온 처리에 의해 발아율이 증가하기도 했다. 인위 노화처리에 따라 종자의 발아율과 ascorbate peroxidase 활성은 감소하였으며, 품종별로 종자의 활력 저하 정도는 크게 달리 나타났다. 대조 처리 종자와 비교하였을 때, 초저온 처리과정에 발생할 수 있는 산화스트레스가 들깨 종자의 활력을 저해하지는 않을 것으로 추정되었다. 따라서 들깨 종자를 4-5% 수분함량으로 건조시켜 초저온 동결 저장하면 활력 손실 없이 장기간 보존할 수 있을 것으로 판단되며, 노화가 급속히 진행되는 품종의 경우에는 고활력 자원을 확보하거나 휴면타파 처리 후 초저온 동결 보존하는 것이 유리할 것으로 생각된다.

BACKGROUND: Seed of perilla (Perilla frutescens var. japonica Hara) is short-lived in conventional storage conditions. For long-term conservation of plant species, cryopreservation is the method currently available. This study was performed to find out reliable methods for a long-term storage of seeds of perilla as a genetic resource. METHODS AND RESULTS: Using seeds of 9 perilla cultivars, the effects of desiccation, aging, and cryopreservation on seed germinability and ascorbate peroxidase activity in the seeds were investigated. Initial germinability of the seeds was various, and dry seeds of all cultivars survived cryopreservation without loss of viability. The highest germination was achieved at 4-5% moisture content, and stimulatory effect of cryogenic temperature on the seed germination was observed in some cultivars. Accelerated aging of perilla seeds led to reduction in germination and ascorbate peroxidase activity, and the susceptibility of seeds to aging was different among the tested cultivars. No significant difference in germination was observed for the aged seeds of control and liquid nitrogen exposed. CONCLUSION: The results of this study suggest that cryopreservation at 4-5% moisture content would be a suitable method for long-term conservation of perilla seeds without detrimental effects on germination.

키워드

참고문헌

  1. Arora, R. K. (1997). Plant genetic resources of Northeastern region: diversity, domestication trends, conservation and uses. Proceedings of Indian National Science Academy, B63(3), 175-186.
  2. Asif, M. (2011). Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Oriental Pharmacy and Experimental Medicine, 11(1), 51-59. https://doi.org/10.1007/s13596-011-0002-x
  3. Asif, M. (2012). Phytochemical study of polyphenols in Perilla Frutescens as an antioxidant. Avicenna Journal of Phytomedicine, 2(4), 169-178.
  4. Benson, E. E., & Withers, L. A. (1998). The application of germplasm storage in biotechnology. Plant cell biotechnology (eds. Pais, M. S. S., Mavituna F., and Novais, J. M.), pp. 431-444. NATO ASI Series (Series H: Cell Biology) vol. 18, Springer, Berlin.
  5. Berjak, P., Vertucci, C. W., & Pammenter, N. W. (1993). Effects of developmental status and dehydration rate on characteristics of water and desiccation-sensitivity in recalcitrant seeds of Camellia sinensis. Seed Science Research, 3(3), 155-166. https://doi.org/10.1017/S0960258500001732
  6. Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35(4, suppl), 1011-1019. https://doi.org/10.1590/S1415-47572012000600016
  7. Chandel, K. P. S., Chaudhury, R., Radhamani, J., & Malik, S. K. (1995). Desiccation and freezing sensitivity in recalcitrant seeds of tea, cocoa and jackfruit. Annals of Botany, 76(5), 443-450. https://doi.org/10.1006/anbo.1995.1118
  8. Chang, H. H., Chen, C. S., & Lin, J. Y. (2008). Dietary perilla oil inhibits proinflammatory cytokine production in the bronchoalveolar lavage fluid of ovalbuminchallenged mice. Lipids, 43(6), 499-506. https://doi.org/10.1007/s11745-008-3171-8
  9. Chen, G., Ren, L., Zhang, J., Reed, B. M., Zhang, D., & Shen, X. (2015). Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings. Cryobiology, 70(1), 38-47. https://doi.org/10.1016/j.cryobiol.2014.11.004
  10. Duke, J., & Duke, P. (1978). Tempest in the teapot: Mints. Quarterly Journal of Crude Drug Research, 16(2), 71-95. https://doi.org/10.3109/13880207809083254
  11. Ellis, R. H., & Hong, T. D. (2006). Temperature sensitivity of the low-moisture-content limit to negative seed longevity-moisture content relationships in hermetic storage. Annals of Botany, 97(5), 785-791. https://doi.org/10.1093/aob/mcl035
  12. Engelmann, F. (2004). Plant cryopreservation: Progress and prospects. In Vitro Cellular and Developmental Biology-Plant, 40(5), 427-433. https://doi.org/10.1079/IVP2004541
  13. Farrant, J. M., Pammenter, N. W., & Berjak, P. (1986). The increasing desiccation sensitivity of recalcitrant Avicennia marina seeds with storage time. Physiologia Plantarum, 67(2), 291-298. https://doi.org/10.1111/j.1399-3054.1986.tb02459.x
  14. Fatima, S., Mujib, A., Nasim, S. A., & Siddiqui, Z. H. (2009). Cryopreservation of embryogenic cell suspensions of Catharanthus roseus L. (G) Don. Plant Cell, Tissue and Organ Culture, 98(1), 1-9. https://doi.org/10.1007/s11240-009-9532-z
  15. Finch-Savage, W. E. (1992). Embryo water status and survival in the recalcitrant species Quercus robur L.: Evidence for a critical moisture content. Journal of Experimental Botany, 43(5), 663-669. https://doi.org/10.1093/jxb/43.5.663
  16. Gray, D. J., McColley, D. W., & Compton, M. E. (1993). High-frequency somatic embryogenesis from quiescent seed cotyledons of Cucumis melo cultivars. Journal of the American Society for Horticultural Science, 118(3), 425-432.
  17. Hong, T. D., &Ellis, R. H. (1996). A protocol to determine seed storage behavior. pp. 21-27, International Plant Genetic Resources, Rome, Italy.
  18. Lee, D. J., & Kim, H. W. (2004). Seed viability and fatty acid composition of perilla seed as affected by artificial aging treatment. Korean Journal of International Agriculture, 16(3), 244-248.
  19. Lee, Y. Y., Kang, Y. J., & Lee, Y. B. (2001). The induction of secondary toxic substances and antioxidative enzymes by SO2 fumigation in foliage plants. Korean Journal of Environmental Agriculture, 20(1), 44-49.
  20. Masumoto, N., & Ito, M. (2010). Germination rates of perilla (Perilla frutescens (L.) Britton) mericarps stored at 4oC for 1-20 years. Journal of Natural Medicines, 64(3), 378-382. https://doi.org/10.1007/s11418-010-0413-x
  21. Nagamine, T., Miyashita, S., & Nishikawa, T. (2000). Seed longevity of perilla (Perilla frutescens (L.) Britt var. frutescens. Seed Science and Technology, 28(3), 875-879.
  22. Negi, V. S., Rawat, L. S., Phondani, P. C., & Chandra, A. (2011). Perilla frutescens in transition: a medicinal and oil yielding plant need instant conservation, a case study from Central Himalaya, India. Environment & We an International Journal of Science & Technology, 6(4), 193-200.
  23. Nitta, M., Lee, J. K., Kang, C. W., Katsuta, M., Yasumoto, S., Liu, D., Nagamine, T., & Onishi, O. (2005). The distribution of perilla species. Genetic Resource and Crop Evolution, 52(7), 797-804. https://doi.org/10.1007/s10722-003-6017-5
  24. Pritchard, H. & Prendergast, F. G. (1986). Effects of desiccation and cryopreservation on the in vitro viability of the recalcitrant seed species Araucaria hunstenii K. Schum. Journal of Experimental Botany, 37(9), 1388- 1397. https://doi.org/10.1093/jxb/37.9.1388
  25. Sakai, A., Kobayashi, S., & Oiyama, I. (1990). Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports, 9(1), 30-33. https://doi.org/10.1007/BF00232130
  26. Salomao, A. N. (2002). Tropical seed species' responses to liquid nitrogen exposure. Brazilian Journal of Plant Physiology, 14(2), 133-138. https://doi.org/10.1590/S1677-04202002000200008
  27. Scialabba, A., Bellani, L. M. & Dell'aquila, A. (2002). Effects of ageing on peroxidase activity and localization in radish (Raphanus sativus L.) seeds. European Journal of Histochemistry, 46(4), 351-358. https://doi.org/10.4081/1747
  28. Shaban, M. (2013). Review on physiological aspects of seed deterioration. International Journal of Agriculture and Crop Sciences, 6(11), 627-631.
  29. Shin, H. S., & Kim, S. W. (1994). Lipid composition of perilla seed. Journal of the American Oil Chemists' Society, 71(6), 619-622. https://doi.org/10.1007/BF02540589
  30. Sung, J. M., & Chiu, C. C. (1995). Lipid peroxidation and peroxide-scavenging enzymes of naturally aged soybean seed. Plant Science, 110(1), 45-52. https://doi.org/10.1016/0168-9452(95)91223-J
  31. Sung, J. M., & Jeng, T. L. (1994). Lipid peroxidation and peroxides scavenging-enzymes associated with accelerated aging of peanut seed. Physiological Plantarum, 91(1), 51-55. https://doi.org/10.1111/j.1399-3054.1994.tb00658.x
  32. Tompsett, P. B., & Pritchand, H. (1993). Water status changes during development in relation to germination and desiccation tolerance of Aesculus hippocastanum L. seeds. Annals of Botany, 71(2), 107-116. https://doi.org/10.1006/anbo.1993.1014
  33. Vertucci, C. W., & Roos, E. E. (1990). Theoretical basis of protocols for seed storage. Plant Physiology, 94(3), 1019-1023. https://doi.org/10.1104/pp.94.3.1019
  34. Walters, C. (1998). Understanding the mechanisms and kinetics of seed aging. Seed Science Research, 8(2), 223-244. https://doi.org/10.1017/S096025850000413X
  35. Wesley-Smith, J., Vertucci, C. W., Berjak, P., Pammenter, N. W., & Crane, J. (1992). Cryopreservation of desiccation sensitive axes of Camellia sinensis in relation to dehydration, freezing rate and the thermal properties of tissue water. Journal of Plant Physiology, 140(5), 596-604. https://doi.org/10.1016/S0176-1617(11)80795-9
  36. Yi, J. Y., Lee, G. A., Chung, J. W., Lee, S. Y., & Lim, K. B. (2013). Efficient cryopreservation of Lilium spp. shoot tips using droplet-vitrification. Plant Breeding and Biotechnology, 1(2), 131-136. https://doi.org/10.9787/PBB.2013.1.2.131
  37. Yi, J., & Lee, Y. (2014). Plant germplasm preservation research system of National center for genetic resources preservation (NCGRP) in United State. Journal of the Korean Society for Seed Science and Industry, 11(3), 10-17.