DOI QR코드

DOI QR Code

Absolute Test for a 4-inch Flat and Its Measurement Uncertainty

4인치 평면의 절대 측정 및 측정불확도 계산

  • Kim, Su-Young (Department of Science of Measurement, University of Science and Technology) ;
  • Song, Jae-Bong (Korea Research Institute of Standards and Science) ;
  • Yang, Ho-Soon (Department of Science of Measurement, University of Science and Technology) ;
  • Rhee, Hyug-Gyo (Department of Science of Measurement, University of Science and Technology)
  • 김수영 (과학기술연합대학원대학교 측정과학과) ;
  • 송재봉 (한국표준과학연구원) ;
  • 양호순 (과학기술연합대학원대학교 측정과학과) ;
  • 이혁교 (과학기술연합대학원대학교 측정과학과)
  • Received : 2017.09.26
  • Accepted : 2017.11.09
  • Published : 2017.12.25

Abstract

The flatness of a reference flat plays an important role, from the calibration of an interferometer to the reference for a semiconductor or flat-panel display, etc. Especially if we order the flatness measurement outside Korea, we may spend more time and money. In this paper, we measured the flatness of a reference flat using a three-flat test, which is one of the absolute measurement methods, and calculated its measurement uncertainty. In the three-flat test we adopted, each flat is tested against another flat, with three unknown flats, using an interferometer. Among several three-flat tests, we adopted Griesmann's method which has a low measurement uncertainty and is less dependent on the experimental equipment. As a result, the measurement uncertainty was found to be less than 0.5 nm rms, which is very accurate for high-tech industrial applications.

기준 평면의 평면도는 간섭계 교정에서부터 반도체, 플랫 패널 디스플레이, 실리콘 기판에 필요한 기준면 제공 등에 매우 중요한 역할을 한다. 특히 기준 평면의 평면도 측정을 해외에서 수행해 올 경우 시간적인 지연과 함께 금전적인 손해가 크므로 국내에서 측정 기술을 구축할 필요가 있다. 본 논문에서는 국내에서 처음으로 절대 측정 방법인 three-flat test 방법을 사용해 기준 평면의 평면도를 정확하게 구하고 측정불확도를 계산하였다. Three-flat test는 간섭계를 사용하여 세 개의 기준 평면을 상호 비교 측정하여 얻은 결과에서 각 평면의 평면도를 정확하게 구하는 방법이다. Three-flat test 방법들 중 실험실에 구축된 장비로 실험 가능하며 간단한 계산 과정으로 낮은 측정불확도를 얻을 수 있는 Griesmann 방법을 적용하여 실험하였다. 그 결과, 세 광학 평면에 대한 평면도를 얻을 수 있었고, 측정불확도는 각 광학 평면에 대해 0.5 nm rms 이내의 신뢰 수준임을 확인하여 높은 수준으로 자체 평면도 측정이 가능함을 확인하였다.

Keywords

References

  1. A. Davies, C. J. Evans, R. Kestner, and M. Bremer, "The NIST X-ray optics CALIBration InteRferometer (XCALIBIR)," in Proc. Optical Fabrication and Testing (Quebec, Canada 2000), OSA Technical Digest, paper OWA5.
  2. G. Schulz and J. Schwider, "Precise measurement of planeness," Appl. Opt. 6, 1077-1084 (1967). https://doi.org/10.1364/AO.6.001077
  3. R. E. Parks, "Removal of test optics errors," Proc. SPIE 153, 56-63 (1978).
  4. B. S. Fritz, "Absolute calibration of an optical flat," Opt. Eng. 23, 379-383 (1984).
  5. J. Grzanna and G. Schulz, "Absolute testing of flatness standards at square-grid points," Opt. Commun. 77, 107-112 (1990). https://doi.org/10.1016/0030-4018(90)90417-R
  6. C. Ai and J. C. Wyant, "Absolute testing of flats decomposed to even and odd functions," Proc. SPIE 1776, 73-83 (1992).
  7. C. Ai and J. C. Wyant, "Absolute testing of flats by using even and odd functions," Appl. Opt. 32, 4698-4705 (1993). https://doi.org/10.1364/AO.32.004698
  8. C. J. Evans and R. N. Kestner, "Test optics error removal," Appl. Opt. 35, 1015-1021 (1996). https://doi.org/10.1364/AO.35.001015
  9. R. E. Parks, L-Z. Shao, and C. J. Evans, "Pixel-based absolute topography test for three flats," Appl. Opt. 37, 5951-5956 (1998). https://doi.org/10.1364/AO.37.005951
  10. U. Griesmann, "Three-flat test solutions based on simple mirror symmetry," Appl. Opt. 45, 5856-5865 (2006). https://doi.org/10.1364/AO.45.005856
  11. M. F. Kuchel, "A new approach to solve the three-flat problem," Optik 112, 381-391 (2001). https://doi.org/10.1078/0030-4026-00076
  12. U. Griesmann, Q. Wang, and J. Soons, "Three-flat tests including mounting-induced deformations," Opt. Eng. 46, 093601 (2007). https://doi.org/10.1117/1.2784531
  13. Korea Research Institute of Standards and Science, "4" Flat rotary stage," in Certificate of Calibration (KRISS, Daejeon, Korea, 2017).
  14. W. Song, F. Wu, and X. Hou, "Method to test rotationally symmetric surface deviation with high accuracy," Appl. Opt. 51, 5567-5572 (2012). https://doi.org/10.1364/AO.51.005567
  15. L. Yong, L. Xu, J. Hongzhen, H. Yuhang, R. Huan, Y. Yi, Z. Lin, S. Zhendong, and Y. Quan, "Principal and error analysis of mirror symmetry method in three-flat test," Proc. SPIE 9297, 929710 (2014).
  16. H. Liu, S. Liu, W. Gao, and Q. Fang, "Research of absolute testing based on N-position rotations," Proc. SPIE 9796, 97960P (2016).
  17. W. Wang, B. Wu, P. Liu, J. Liu, and J. Tan, "Position error correction in absolute surface measurement based on a multi-angle averaging method," Meas. Sci. Technol. 28, 045009 (2017). https://doi.org/10.1088/1361-6501/aa5afc
  18. G. Moona, R. Sharma, U. Kiran, and K. P. Chaudhary, "Evaluation of measuremnt uncertainty for absolute flatness measurement by using fizeau interferometer with phaseshifting capability," MAPAN-J. Metrol. Soc. India 29, 261-267 (2014).
  19. International Organization for Standardization, ISO/IEC Guide 98-3:2008, Guide to the Expression of Uncertainty in Measurement (GUM: 1995)(ISO 2008), Part 3.