References
- J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, "Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor," Appl. Opt. 40, 366 (2001). https://doi.org/10.1364/AO.40.000366
- V. Quetschke, J. Gleason, M. Rakhmanov, J. Lee, L. Zhang, K. Y. Franzen, C. Leidel, G. Mueller, R. Amin, D. B. Tanner, and D. H. Reitze, "Adaptive control of laser modal properties," Opt. Lett. 31, 217 (2006). https://doi.org/10.1364/OL.31.000217
- Z. Liu, P. Fulda, M. A. Arain, L. Williams, G. Mueller, D. B. Tanner, and D. H. Reitze, "Feedback control of optical beam spatial profiles using thermal lensing," App. Opt. 52, 6452 (2013).
- W. Koechner, Solid-state laser engineering (Springer-Verlag, 1998), Chapter 7.
- V. Ramanathan, J. Lee, S. Xu, X. Wang, and D. H Reitze, "Analysis of thermal aberrations in a high average power single-stage Ti: sapphire regenerative chirped pulse amplifier: Simulation and experiment," Rev. Sci. Instrum. 77, 103103 (2006). https://doi.org/10.1063/1.2360989
- B. Neuenschwander, R. Weber, and H. P. Weber, "Determination of the thermal lens in solid-state lasers with stable cavities," IEEE J. Quantum Electron. 31, 1082 (1995). https://doi.org/10.1109/3.387046
- G. Wagner, M. Shiler, and V. Wulfmeyer, "Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power," Opt. Express 13, 8045 (2005). https://doi.org/10.1364/OPEX.13.008045
- G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, "Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers," Classical Quantum Gravity 19, 1793 (2002). https://doi.org/10.1088/0264-9381/19/7/376
- M. Adier, F. Aguilar, and T. Akutsu et al., "Progress and challenges in advanced ground-based gravitational-wave detectors." Gen. Relativ. Gravitation 46, 1749 (2014). https://doi.org/10.1007/s10714-014-1749-4
- E. Wyss, M. Roth, T. Graf, and H. P. Weber, "Thermooptical compensation methods for high-power lasers," IEEE J. Quantum Electron. 38, 1620 (2002). https://doi.org/10.1109/JQE.2002.805105
- M. A. Arain, V. Quetschke, J. Gleason, L. F. Williams, M. Rakhmanov, J. Lee, R. J. Cruz, G. Mueller, D. B. Tanner, and D. H. Reitze, "Adaptive beam shaping by controlled thermal lensing in optical elements," Appl. Opt. 46, 2153 (2007). https://doi.org/10.1364/AO.46.002153
- R. Lawrence, D. Ottaway, M. Zucker, and P. Fritschel, "Active correction of thermal lensing through external radiative thermal actuation," Opt. Lett. 22, 2635 (2004).
- S. Sato, "Liquid-crystal lens-cell with variable focal length," Jpn. J. Appl. Phys. 18, 1679 (1979). https://doi.org/10.1143/JJAP.18.1679
- J. Schwarz, M. Geissel, P. Rambo, J. Porter, D. Headley, and M. Ramsey, "Development of a variable focal length concave mirror for on-shot thermal lens correction in rod amplifiers," Opt. Express 14, 10957 (2006). https://doi.org/10.1364/OE.14.010957
- K. Dobek, M. Baranowski, J. Karolczak, D. Komar, K. Kreczmer, and J. Szuniewicz, "Thermal lens in a liquid sample with focal length controllable by bulk temperature," Appl. Phys. B 122, 151 (2016).
- T. A. Meyers, Encyclopedia of analytical chemistry (John Wiley & Sons Ltd 2010).
- J. Moreau and V. Loriette, "Confocal thermal-lens microscope," Opt. Lett. 29, 1488 (2004). https://doi.org/10.1364/OL.29.001488
- W. Koechner, "Thermal lensing in a Nd:YAG laser rod," Appl. Opt. 9, 2548 (1970). https://doi.org/10.1364/AO.9.002548
- U. O. Farrukh, A. M. Buoncristiani, and C. E. Byvik, "An analysis of the temperature distribution in finite solid-state laser rods," IEEE J. Quantum Electron. 24, 2253 (1998).
- M. Innocenzi, H. Yura, C. Fincher, and R. Fields, "Thermal modeling of continuous-wave end-pumped solid-state lasers," Appl. Phys. Lett. 56, 1831 (1990). https://doi.org/10.1063/1.103083
- A. Cousins, "Temperature and thermal stress scaling in finitelength end-pumped laser rods," IEEE J. Quantum Electron. 28, 1057 (1992). https://doi.org/10.1109/3.135228
- M. Schmid, T. Graf, and H. P. Weber, "Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating," J. Opt. Soc. Am. B 17, 1398 (2000). https://doi.org/10.1364/JOSAB.17.001398
- H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids (Oxford Univ. 1948).
- J. Lee, and D. H. Reitze, "Analytic spatial and temporal temperature profile in a finite laser rod with input laser pulses," Opt. Express 23, 2591 (2015). https://doi.org/10.1364/OE.23.002591
- F. Kreitha and M. S. Bohn, Principle of heat transfer, 6th ed. (Brooks/Cole, CA, USA, 2001).
- G. P. Kwon and J. Lee, "Self-adaptive thermal-lensing compensation for a high-power laser," J. Korean Phys. Soc. 69, 1531 (2016). https://doi.org/10.3938/jkps.69.1531
- R. Lausten, and P. Balling, "Thermal lensing in pulsed laser amplifiers: an analytical model," J. Opt. Soc. Am. B 20, 1479 (2003). https://doi.org/10.1364/JOSAB.20.001479
-
A. H. Farhadian, H. Saghaffier, and M. Dehghanbaghi, "Calculation of thermal lensing in end-pumped
$YVO_4$ / Nd:$YVO_4$ composite crystals in view of the temperature distribution," J. Russ Laser Res. 36, 350 (2015). https://doi.org/10.1007/s10946-015-9509-9 - M. N. Ozisik, Boundary value problems of heat conduction (Dover Publications, INC 1968), pp. 457.
- M. Sameti and A. Kasaeian, "Heat diffusion in an anisotropic medium with central heat source," Int. J. Partial Differ. Equations Appl. 2, 23 (2014).
- S. Ito, H. Nagaoka, T. Kobayashi, A. Endo and K. Torizuka, "Measurement of thermal lensing in a power amplifier of a terawatt Ti:sapphire laser," Appl. Phys. B 74, 343 (2002). https://doi.org/10.1007/s003400200812